Theory and Practice of Scanning Optical Microscopy
Author: Tony Wilson
Publisher:
Published: 1984
Total Pages: 232
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: Tony Wilson
Publisher:
Published: 1984
Total Pages: 232
ISBN-13:
DOWNLOAD EBOOKAuthor: Tony Wilson
Publisher:
Published: 1984
Total Pages: 228
ISBN-13:
DOWNLOAD EBOOKAuthor: James Pawley
Publisher: Springer Science & Business Media
Published: 2013-04-17
Total Pages: 639
ISBN-13: 1475753489
DOWNLOAD EBOOKThis third edition of a classic text in biological microscopy includes detailed descriptions and in-depth comparisons of parts of the microscope itself, digital aspects of data acquisition and properties of fluorescent dyes, the techniques of 3D specimen preparation and the fundamental limitations, and practical complexities of quantitative confocal fluorescence imaging. Coverage includes practical multiphoton, photodamage and phototoxicity, 3D FRET, 3D microscopy correlated with micro-MNR, CARS, second and third harmonic signals, ion imaging in 3D, scanning RAMAN, plant specimens, practical 3D microscopy and correlated optical tomography.
Author: Douglas B. Murphy
Publisher:
Published: 2013
Total Pages: 538
ISBN-13:
DOWNLOAD EBOOKAuthor: Min Gu
Publisher: Springer Science & Business Media
Published: 2000
Total Pages: 236
ISBN-13: 9783540662624
DOWNLOAD EBOOKOptical microscopy and associated technologies have advanced rapidly along with laser technology. These techniques have stimulated further development of the optical imaging theory, including 3-dimensional microscopy imaging theory, the theory of imaging with ultrashort pulsed beam illumination and the aberration theory for high numerical-aperture objectives. This book introduces these new theories in modern optical microscopy, providing comparisons with classical imaging as appropriate.
Author: John Girkin
Publisher: CRC Press
Published: 2019-06-14
Total Pages: 260
ISBN-13: 1351630369
DOWNLOAD EBOOKChoice Recommended Title, March 2020 Optical microscopy is used in a vast range of applications ranging from materials engineering to in vivo observations and clinical diagnosis, and thanks to the latest advances in technology, there has been a rapid growth in the number of methods available. This book is aimed at providing users with a practical guide to help them select, and then use, the most suitable method for their application. It explores the principles behind the different forms of optical microscopy, without the use of complex maths, to provide an understanding to help the reader utilise a specific method and then interpret the results. Detailed physics is provided in boxed sections, which can be bypassed by the non-specialist. It is an invaluable tool for use within research groups and laboratories in the life and physical sciences, acting as a first source for practical information to guide less experienced users (or those new to a particular methodology) on the range of techniques available. Features: The first book to cover all current optical microscopy methods for practical applications Written to be understood by a non-optical expert with inserts to provide the physical science background Brings together conventional widefield and confocal microscopy, with advanced non-linear and super resolution methods, in one book To learn more about the author please visit here.
Author: Stephen J. Pennycook
Publisher: Springer Science & Business Media
Published: 2011-03-24
Total Pages: 764
ISBN-13: 1441972005
DOWNLOAD EBOOKScanning transmission electron microscopy has become a mainstream technique for imaging and analysis at atomic resolution and sensitivity, and the authors of this book are widely credited with bringing the field to its present popularity. Scanning Transmission Electron Microscopy(STEM): Imaging and Analysis will provide a comprehensive explanation of the theory and practice of STEM from introductory to advanced levels, covering the instrument, image formation and scattering theory, and definition and measurement of resolution for both imaging and analysis. The authors will present examples of the use of combined imaging and spectroscopy for solving materials problems in a variety of fields, including condensed matter physics, materials science, catalysis, biology, and nanoscience. Therefore this will be a comprehensive reference for those working in applied fields wishing to use the technique, for graduate students learning microscopy for the first time, and for specialists in other fields of microscopy.
Author: Gordon S. Kino
Publisher: Academic Press
Published: 1996-09-18
Total Pages: 353
ISBN-13: 008052978X
DOWNLOAD EBOOKThis book provides a comprehensive introduction to the field of scanning optical microscopy for scientists and engineers. The book concentrates mainly on two instruments: the Confocal Scanning Optical Microscope (CSOM), and the Optical Interference Microscope (OIM). A comprehensive discussion of the theory and design of the Near-Field Scanning Optical Microscope (NSOM) is also given. The text discusses the practical aspects of building a confocal scanning optical microscope or optical interference microscope, and the applications of these microscopes to phase imaging, biological imaging, and semiconductor inspection and metrology.A comprehensive theoretical discussion of the depth and transverse resolution is given with emphasis placed on the practical results of the theoretical calculations and how these can be used to help understand the operation of these microscopes. - Provides a comprehensive introduction to the field of scanning optical microscopy for scientists and engineers - Explains many practical applications of scanning optical and interference microscopy in such diverse fields as biology and semiconductor metrology - Discusses in theoretical terms the origin of the improved depth and transverse resolution of scanning optical and interference microscopes with emphasis on the practical results of the theoretical calculations - Considers the practical aspects of building a confocal scanning or interference microscope and explores some of the design tradeoffs made for microscopes used in various applications - Discusses the theory and design of near-field optical microscopes - Explains phase imaging in the scanning optical and interference microscopes
Author: Michael A. Paesler
Publisher: Wiley-Interscience
Published: 1996-06-07
Total Pages: 378
ISBN-13:
DOWNLOAD EBOOKA complete guide to one of the most revolutionary technologies in the history of imaging Near-field microscopes combine the richness of optical analysis, the noninvasive character of light, and the wide variety of sample environments of conventional microscopes with the finer spatial resolution of alternative technologies. Near-Field Optics combines an introduction to near-field optical theory with a handbook and reference for the practice and application of near-field microscopy. Michael A. Paesler and Patrick J. Moyer provide the most comprehensive presentation available on the instrumentation and operation of near-field microscopes. Writing from the viewpoint of the scientist who wants to apply these revolutionary instruments in a laboratory setting, the authors: * Explain the pertinent optical theory and provide a developmental history of near-field instruments * Discuss imaging theory and its application in the near-field scanning optical microscope (NSOM) * Explore the optical behavior of elements that provide the near-field/far-field connection in an NSOM * Provide operational how-to's for NSOMs * Examine the theory and operation of optical tunneling microscopes with special emphasis on the photon tunneling microscope (PTM) * Enumerate contrast mechanisms available to the near-field microscopist * Describe the application of near-field techniques in biology, materials science, surface chemistry, and information storage
Author: Jerome Mertz
Publisher: Cambridge University Press
Published: 2019-08
Total Pages: 475
ISBN-13: 1108428304
DOWNLOAD EBOOKPresents a fully updated, self-contained textbook covering the core theory and practice of both classical and modern optical microscopy techniques.