Der Grundkurs Theoretische Physik deckt in 7 Bänden alle für das Diplom und für Bachelor/Master-Studiengänge maßgeblichen Gebiete ab. Jeder Band vermittelt das im jeweiligen Semester notwendige theoretisch-physikalische Rüstzeug. Übungsaufgaben mit ausführlichen Lösungen dienen der Vertiefung des Stoffs. Der 6. Band zur Statistischen Physik wurde für die Neuauflage grundlegend überarbeitet und um aktuelle Entwicklungen ergänzt. Durch die zweifarbige Gestaltung ist der Stoff jetzt noch übersichtlicher gegliedert.
Eight Lectures on Theoretical Physics, Delivered at Columbia University in 1909. Translated by A.P. Wills by Max Planck, first published in 1915, is a rare manuscript, the original residing in one of the great libraries of the world. This book is a reproduction of that original, which has been scanned and cleaned by state-of-the-art publishing tools for better readability and enhanced appreciation. Restoration Editors' mission is to bring long out of print manuscripts back to life. Some smudges, annotations or unclear text may still exist, due to permanent damage to the original work. We believe the literary significance of the text justifies offering this reproduction, allowing a new generation to appreciate it.
Covers the theory of electromagnetic fields in matter, and the theory of the macroscopic electric and magnetic properties of matter. There is a considerable amount of new material particularly on the theory of the magnetic properties of matter and the theory of optical phenomena with new chapters on spatial dispersion and non-linear optics. The chapters on ferromagnetism and antiferromagnetism and on magnetohydrodynamics have been substantially enlarged and eight other chapters have additional sections.
From Newton to Mandelbrot takes the student on a tour of the most important landmarks of theoretical physics: classical, quantum, and statistical mechanics, relativity, electrodynamics, and, the most modern and exciting of all, the physics of fractals. The treatment is confined to the essentials of each area, and short computer programs, numerous problems, and beautiful color illustrations round off this unusual textbook. Ideally suited for a one-year course in theoretical physics it will also prove useful in preparing and revising for exams. This edition is corrected and includes a new appendix on elementary particle physics, answers to all short questions, and a diskette where a selection of executable programs exploring the fractal concept can be found.
A master teacher presents the ultimate introduction to classical mechanics for people who are serious about learning physics "Beautifully clear explanations of famously 'difficult' things," -- Wall Street Journal If you ever regretted not taking physics in college -- or simply want to know how to think like a physicist -- this is the book for you. In this bestselling introduction to classical mechanics, physicist Leonard Susskind and hacker-scientist George Hrabovsky offer a first course in physics and associated math for the ardent amateur. Challenging, lucid, and concise, The Theoretical Minimum provides a tool kit for amateur scientists to learn physics at their own pace.
Der Grundkurs Theoretische Physik deckt in sieben Bänden alle für Diplom- und Bachelor/Master-Studiengänge maßgeblichen Gebiete ab. Jeder Band vermittelt das im jeweiligen Semester nötige theoretisch-physikalische Rüstzeug. Übungsaufgaben mit ausführlichen Lösungen dienen der Vertiefung des Stoffs. Band 1 behandelt die klassische Mechanik. Vorausgesetzt wird nur die übliche Schulmathematik, andere mathematische Hilfsmittel werden zu Beginn ausführlich erläutert. Die zweifarbig gestaltete Neuauflage wurde grundlegend überarbeitet und ergänzt.
INSTANT NEW YORK TIMES BESTSELLER “Most appealing... technical accuracy and lightness of tone... Impeccable.”—Wall Street Journal “A porthole into another world.”—Scientific American “Brings science dissemination to a new level.”—Science The most trusted explainer of the most mind-boggling concepts pulls back the veil of mystery that has too long cloaked the most valuable building blocks of modern science. Sean Carroll, with his genius for making complex notions entertaining, presents in his uniquely lucid voice the fundamental ideas informing the modern physics of reality. Physics offers deep insights into the workings of the universe but those insights come in the form of equations that often look like gobbledygook. Sean Carroll shows that they are really like meaningful poems that can help us fly over sierras to discover a miraculous multidimensional landscape alive with radiant giants, warped space-time, and bewilderingly powerful forces. High school calculus is itself a centuries-old marvel as worthy of our gaze as the Mona Lisa. And it may come as a surprise the extent to which all our most cutting-edge ideas about black holes are built on the math calculus enables. No one else could so smoothly guide readers toward grasping the very equation Einstein used to describe his theory of general relativity. In the tradition of the legendary Richard Feynman lectures presented sixty years ago, this book is an inspiring, dazzling introduction to a way of seeing that will resonate across cultural and generational boundaries for many years to come.
Classic treatise covers mathematical topics needed by theoretical and experimental physicists (vector analysis, calculus of variations, etc.), followed by coverage of mechanics, electromagnetic theory, thermodynamics, quantum mechanics, and nuclear physics.
In 1941, E.C.G. Stueckelberg wrote a paper, based on ideas of V. Fock, that established the foundations of a theory that could covariantly describe the classical and quantum relativistic mechanics of a single particle. Horwitz and Piron extended the applicability of this theory in 1973 (to be called the SHP theory) to the many-body problem. It is the purpose of this book to explain this development and provide examples of its applications. We first review the basic ideas of the SHP theory, both classical and quantum, and develop the appropriate form of electromagnetism on this dynamics. After studying the two body problem classically and quantum mechanically, we formulate the N-body problem. We then develop the general quantum scattering theory for the N-body problem and prove a quantum mechanical relativistically covariant form of the Gell-Mann-Low theorem. The quantum theory of relativistic spin is then developed, including spin-statistics, providing the necessary apparatus for Clebsch-Gordan additivity, and we then discuss the phenomenon of entanglement at unequal times. In the second part, we develop relativistic statistical mechanics, including a mechanism for stability of the off-shell mass, and a high temperature phase transition to the mass shell. Finally, some applications are given, such as the explanation of the Lindneret alexperiment, the proposed experiment of Palacios et al which should demonstrate relativistic entanglement (at unequal times), the space-time lattice, low energy nuclear reactions and applications to black hole physics.
This two-part text fills what has often been a void in the first-year graduate physics curriculum. Through its examination of particles and continua, it supplies a lucid and self-contained account of classical mechanics — which in turn provides a natural framework for introducing many of the advanced mathematical concepts in physics. The text opens with Newton's laws of motion and systematically develops the dynamics of classical particles, with chapters on basic principles, rotating coordinate systems, lagrangian formalism, small oscillations, dynamics of rigid bodies, and hamiltonian formalism, including a brief discussion of the transition to quantum mechanics. This part of the book also considers examples of the limiting behavior of many particles, facilitating the eventual transition to a continuous medium. The second part deals with classical continua, including chapters on string membranes, sound waves, surface waves on nonviscous fluids, heat conduction, viscous fluids, and elastic media. Each of these self-contained chapters provides the relevant physical background and develops the appropriate mathematical techniques, and problems of varying difficulty appear throughout the text.