The Titius-Bode Law of Planetary Distances: Its History and Theory is a 15-chapter book that first discusses the prehistory of the Law from Kepler to Kant. The next chapter details the formulation of the Titius-Bode Law. Subsequent chapters describe the Law's early successes and failures, early modifications of the Law, the Blagg-Richardson formulation, and the significance of the Law with respect to the origin of the solar system. Other chapters discuss the theories of all types that have been proposed to explain the ""classical Titius-Bode Law"", i.e. the geometric progression.
The Solar System is a complex and fascinating dynamical system. This is the first textbook to describe comprehensively the dynamical features of the Solar System and to provide students with all the mathematical tools and physical models they need to understand how it works. It is a benchmark publication in the field of planetary dynamics and destined to become a classic. Clearly written and well illustrated, Solar System Dynamics shows how a basic knowledge of the two- and three-body problems and perturbation theory can be combined to understand features as diverse as the tidal heating of Jupiter's moon Io, the origin of the Kirkwood gaps in the asteroid belt, and the radial structure of Saturn's rings. Problems at the end of each chapter and a free Internet Mathematica® software package are provided. Solar System Dynamics provides an authoritative textbook for courses on planetary dynamics and celestial mechanics. It also equips students with the mathematical tools to tackle broader courses on dynamics, dynamical systems, applications of chaos theory and non-linear dynamics.
Visual Astronomy introduces the basics of observational astronomy, a fundamentally limitless opportunity to learn about the universe with your unaided eyes or with tools such as binoculars, telescopes, or cameras. The book explains the essentials of time a
My principal aim in writing this book was to present a wide range of astrophysical topics in sufficient depth to give the reader a general quantitative understanding of the subject. The book outlines cosmic events but does not portray them in detail-it provides aseries of astrophysical sketches. I think this approach befits the present uncertainties and changing views in astrophysics. The material is based on notes I prepared for a course aimed at seniors and beginning graduate students in physics and astronomy at Cornell. This course defined the level at which the book is written. For readers who are versed in physics but are unfamiliar with astronomical terminology, Appendix A is included. It gives a brief background of astronomical concepts and should be read before starting the main text. The first few chapters outline the scope of modern astrophysics and deal with elementary problems concerning the size and mass of cosmic objects. However, it soon becomes apparent that a broad foundation in physics is needed to proceed. This base is developed in Chapters 4 to 7 by using, as ex am pIes, specific astronomi cal situations. Chapters 8 to 10 enlarge on the topics first outlined in Chapter I and show how we can obtain quantitative insights into the structure and evolution of stars, the dynamics of co~mic gases, and the large-scale behavior of the universe.
Johann Bode developed a so-called law of planetary distances best known as Bode’s Law. The story of the discovery of Juno in 1804 by Karl Harding tells how Juno fit into that scheme and is examined as it relates to the philosopher Georg Hegel’s 1801 thesis that there could be no planets between Mars and Jupiter. By 1804 that gap was not only filled but had three residents: Ceres, Pallas and Juno! When Juno was discovered no one could have imagined its study would call into question Newton’s law of gravity, or be the impetus for developing the mathematics of the fast Fourier transform by Carl Gauss. Clifford Cunningham, a dedicated scholar, opens to scrutiny this critical moment of astronomical discovery, continuing the story of asteroid begun in earlier volumes of this series. The fascinating issues raised by the discovery of Juno take us on an extraordinary journey. The revelation of the existence of this new class of celestial bodies transformed our understanding of the Solar System, the implications of which are thoroughly discussed in terms of Romantic Era science, philosophy, poetry, mathematics and astronomy. The account given here is based on both English and foreign correspondence and scientific papers, most of which are translated for the first time.
Explores how current data helps explain various phenomena, and describes the theories and practical methods that may help unravel future cosmic questions as they arise.
Ian Stewart's up-to-the-minute guide to the cosmos moves from the formation of the Earth and its Moon to the planets and asteroids of the solar system and from there out into the galaxy and the universe. He describes the architecture of space and time, dark matter and dark energy, how galaxies form, why stars implode, how everything began, and how it will end. He considers parallel universes, what forms extra-terrestrial life might take, and the likelihood of Earth being hit by an asteroid. Mathematics, Professor Stewart shows, has been the driving force in astronomy and cosmology since the ancient Babylonians. He describes how Kepler's work on planetary orbits led Newton to formulate his theory of gravity, and how two centuries later irregularities in the motion of Mars inspired Einstein's theory of general relativity. In crystal-clear terms he explains the fundamentals of gravity, spacetime, relativity and quantum theory, and shows how they all relate to each other. Eighty years ago the discovery that the universe is expanding led to the Big Bang theory of its origins. This in turn led cosmologists to posit features such as dark matter and dark energy. But does dark matter exist? Could another scientific revolution be on the way to challenge current scientific orthodoxy? These are among the questions Ian Stewart raises in his quest through the realms of astronomy and cosmology.