High-surface-area materials have recently attracted significant interest due to potential applications in various fields such as electrochemistry and catalysis, gas-phase catalysis, optics, sensors and actuators, energy harvesting and storage. In contrast to classical materials the properties of high-surface-area materials are no longer determined by their bulk, but by their nanoscale architecture. Nanoporous gold (np-Au) represents the fascinating class of mesoporous metals that have been intensively investigated in recent years. The current interest and the increasing number of scientific publications show that np-Au by itself is an outstanding nano-material that justifies a book devoted to all aspects of its properties and applications. The resulting publication is a discussion of this unique nano-material and is an accessible and comprehensive introduction to the field. The book provides a broad, multi-disciplinary platform to learn more about the properties of nanoporous gold from an inter-disciplinary perspective. It starts with an introduction and overview of state-of-the-art applications and techniques characterizing this material and its applications. It then covers the progress in research within the last years. The chapters are in-depth overviews written by the world's leading scientists in the particular field. Each chapter covers one technique or application so that the reader can easily target their favoured topic and will get the latest and state-of-the-art information in the field.
Nanofibers are well known for their vast range of applications in sensors, catalysts, conductors, tissue engineering, and so on, owing to their high surface-area-to-volume ratio, high porosity, and the ease of tuning their structures, functionalities, and properties This book is a comprehensive overview of the synthesis, characterization, and application of nanofibers. Written by experts in the field, chapters cover such topics as green synthesis of nanofibers, electrospinning of carbon nanofibers, applications of ceramic nanofibers, transparent electrodes for flexible and stretchable electronics, nanoribbons, and much more.
The intent of this book is to report on the electrical, optical, and structural properties of silver and gold films in dependence on substrate material, annealing treatment, and gas adsorption. A main point is the calculation of the scattering cross section of the conduction electrons. All results are substantiated by extended experimental data, as well as numerous illustrations and tables.
This book provides the latest research & developments and future trends in photoenergy and thin film materials—two important areas that have the potential to spearhead the future of the industry. Photoenergy materials are expected to be a next generation class of materials to provide secure, safe, sustainable and affordable energy. Photoenergy devices are known to convert the sunlight into electricity. These types of devices are simple in design with a major advantage as they are stand-alone systems able to provide megawatts of power. They have been applied as a power source for solar home systems, remote buildings, water pumping, megawatt scale power plants, satellites, communications, and space vehicles. With such a list of enormous applications, the demand for photoenergy devices is growing every year. On the other hand, thin films coating, which can be defined as the barriers of surface science, the fields of materials science and applied physics are progressing as a unified discipline of scientific industry. A thin film can be termed as a very fine, or thin layer of material coated on a particular surface, that can be in the range of a nanometer in thickness to several micrometers in size. Thin films are applied in numerous areas ranging from protection purposes to electronic semiconductor devices. The 16 chapters in this volume, all written by subject matter experts, demonstrate the claim that both photoenergy and thin film materials have the potential to be the future of industry.
The book focuses on advanced characterization methods for thin-film solar cells that have proven their relevance both for academic and corporate photovoltaic research and development. After an introduction to thin-film photovoltaics, highly experienced experts report on device and materials characterization methods such as electroluminescence analysis, capacitance spectroscopy, and various microscopy methods. In the final part of the book simulation techniques are presented which are used for ab-initio calculations of relevant semiconductors and for device simulations in 1D, 2D and 3D. Building on a proven concept, this new edition also covers thermography, transient optoelectronic methods, and absorption and photocurrent spectroscopy.
This second edition is an updated and revised version of the original text. It offers detailed descriptions of the methods available to predict the occurrence of diffusion in alloys subjected to various processes. Major topic areas covered include diffusion equations, atomic theory of diffusion, diffusion in dilute alloys, diffusion in a concentration gradient, diffusion in non-metals, high diffusivity paths, and thermo- and electro-transport. This is an excellent textbook for use in metallurgical and materials science and engineering education.