NBS Technical Note
Author:
Publisher:
Published: 1974-05
Total Pages: 120
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: United States. National Bureau of Standards
Publisher:
Published: 1970
Total Pages: 890
ISBN-13:
DOWNLOAD EBOOKAuthor:
Publisher:
Published: 1966
Total Pages: 840
ISBN-13:
DOWNLOAD EBOOKLists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Author: H. M. Roder
Publisher:
Published: 1974
Total Pages: 120
ISBN-13:
DOWNLOAD EBOOKAuthor: Randall F. Barron
Publisher: CRC Press
Published: 2017-12-19
Total Pages: 684
ISBN-13: 1315356015
DOWNLOAD EBOOKCryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study. New in the Second Edition: Expands on thermal properties at cryogenic temperatures to include latent heats and superfluid helium Develops the material on conduction heat transfer and divides it into four separate chapters to facilitate understanding of the separate features and computational techniques in conduction heat transfer Introduces EES (Engineering Equation Solver), a computer-aided design tool, and other computer applications such as Maple Describes special features of heat transfer at cryogenic temperatures such as analysis with variable thermal properties, heat transfer in the near-critical region, Kapitza conductance, and network analysis for free-molecular heat transfer Includes design procedures for cryogenic heat exchangers Cryogenic Heat Transfer, Second Edition discusses the unique problems surrounding conduction heat transfer at cryogenic temperatures. This second edition incorporates various computational software methods, and provides expanded and updated topics, concepts, and applications throughout. The book is designed as a textbook for students interested in thermal problems occurring at cryogenic temperatures and also serves as reference on heat transfer material for practicing cryogenic engineers.
Author: Muhammad Akhyar Farrukh
Publisher: BoD – Books on Demand
Published: 2012-08-29
Total Pages: 551
ISBN-13: 9535107151
DOWNLOAD EBOOKSpectroscopy is the study of absorption and emission of electromagnetic radiation due to the interaction between matter and energy that energy depends on the specific wavelength of electromagnetic radiation. This field has proven invaluable research tool in a number of areas including chemistry, physics, biology, medicine and ecology. The spectroscopic field of research is growing day-by-day and scientists are exploring new areas in this field by introducing new techniques. The main purpose of this book is to highlight these new spectroscopic techniques like Magnetic Induction Spectroscopy, Laser-Induced Breakdown Spectroscopy, X-ray Photoelectron Spectroscopy, Low Energy Electron Loss Spectroscopy, Micro- to Macro-Raman Spectroscopy, Liquid-Immersion Raman Spectroscopy, High-Resolution Magic Angle Spinning (HR-MAS) Nuclear Magnetic Resonance (NMR) Spectroscopy, Injection and Optical Spectroscopy, and Nano Spectroscopy. This book is divided into five sections including General Spectroscopy, Advanced Spectroscopy, Nano Spectroscopy, Organic Spectroscopy, and Physical Spectroscopy which cover topics from basic to advanced levels which will provide a good source of learning for teaching and research purposes.
Author:
Publisher:
Published: 1962
Total Pages: 944
ISBN-13:
DOWNLOAD EBOOKAuthor: E. Kiran
Publisher: Springer Science & Business Media
Published: 2013-11-11
Total Pages: 775
ISBN-13: 9401582955
DOWNLOAD EBOOKSupercritical fluids which are neither gas nor liquid, but can be compressed gradually from low to high density, are gaining increasing importance as tunable solvents and reaction media in the chemical process industry. By adjusting the pressure, or more strictly the density, the properties of these fluids are customized and manipulated for the particular process at hand, be it a physical transformation, such as separation or solvation, or a chemical transformation, such as a reaction or reactive extraction. Supercritical fluids, however, differ from both gases and liquids in many respects. In order to properly understand and describe their properties, it is necessary to know the implications of their nearness to criticality, to be aware of the complex types of phase separation (including solid phases) that occur when the components of the fluid mixture are very different from each other, and to develop theories that can cope with the large differences in molecular size and shape of the supercritical solvent and the solutes that are present.
Author: Marc J. Assael
Publisher: CRC Press
Published: 2022-08-05
Total Pages: 499
ISBN-13: 1000598721
DOWNLOAD EBOOKCRC Press is pleased to introduce the new edition of Commonly Asked Questions in Thermodynamics, an indispensable resource for those in modern science and engineering disciplines from molecular science, engineering and biotechnology to astrophysics. Fully updated throughout, this edition features two new chapters focused on energy utilization and biological systems. This edition begins by setting out the fundamentals of thermodynamics, including its basic laws and overarching principles. It provides explanations of those principles in an organized manner, using questions that arise frequently from undergraduates in the classroom as the stimulus. These early chapters explore the language of thermodynamics; the first and second laws; statistical mechanical theory; measurement of thermodynamic quantities and their relationships; phase behavior in single and multicomponent systems; electrochemistry; and chemical and biochemical reaction equilibria. The later chapters explore applications of these fundamentals to a diverse set of subjects including power generation (with and without fossil fuels) for transport, industrial and domestic use; heating; decarbonization technologies; energy storage; refrigeration; environmental pollution; and biotechnology. Data sources for the properties needed to complete thermodynamic evaluations of many processes are included. The text is designed for readers to dip into to find an answer to a specific question where thermodynamics can provide some, if not all, of the answers, whether in the context of an undergraduate course or not. Thus its readership extends beyond conventional technical undergraduates to practicing engineers and also to the interested lay person who seeks to understand the discourse that surrounds the choice of particular technological solutions to current and future energy and material production problems.