The Theory of Turbulent Jets

The Theory of Turbulent Jets

Author: G. N. Abramovich

Publisher: Mit Press

Published: 1963

Total Pages: 671

ISBN-13: 9780262511377

DOWNLOAD EBOOK

The author's first monograph on turbulent jets, in 1936, dealt solely with a free submerged jet. Since that time, the theory of the turbulent jet has been developed in many published works both in the USSR and abroad: it has been enriched with a large amount of experimental material and has been applied in many new fields of engineering. In the last 10 years very substantial progress has been made, and it has now become possible to go beyond the free submerged jet and to solve the problem of a jet in a stream of fluid, to take into account the interaction between the jet and solid walls, to ascertain the relationship between the contour of the jet and the ratio of its density to the density of the surrounding medium, and to establish the characteristic features of a supersonic jet. This monograph contains the results of further research by the author and his colleagues, as well as a critical reappraisal of the more important theoretical and experimental data published by other investigators. The first section deals with the theory of a turbulent jet of incompressible fluid. It gives a systematic analysis of numerous experimental data on velocity profiles, temperature, and the impurity concentration, as well as the outlines of the turbulent mixing lone. The second section sets forth the theory of turbulent gas jets, including strongly preheated and supersonic jets. The theory of free turbulence in a gas, suitable in principle for any degree of compressibility, is revised, and the equations are derived for motion and heat exchange in the boundary layer of a jet at very high temperature. The third section solves several problems of the spreading of jets in finite and semifinite space, and the fourth section describes various applications of the theory of jets, many of which are reported for the first time or have been significantly revised.


Calculation of the Buoyant Motion of a Turbulent Planar Heated Jet in an Opposing Air Stream

Calculation of the Buoyant Motion of a Turbulent Planar Heated Jet in an Opposing Air Stream

Author: Milton M. Klein

Publisher:

Published: 1978

Total Pages: 40

ISBN-13:

DOWNLOAD EBOOK

A broad experimental and theoretical program is being conducted to aid in the development of an operational warm fog dispersal system which utilizes momentum driven ground based heat sources. To help determine optimum heat and thrust combinations for the system, investigations are being made of the buoyant motion of heated turbulent jets both coflowing (wind and jet in the same direction) and counterflowing (wind and jet opposite). The investigation of the coflowing jet has been completed and in addition a model has been developed from which the dynamic characteristics of a heated counterflowing jet in the absence of buoyancy can be calculated. The present investigation is concerned with the effect of buoyancy upon the motion of a counterflowing jet. The lower portion of the trajectory, which has been calculated by the present model, is in fair to good agreement with the corresponding experimental curve, the calculated curve tending to be somewhat higher than that obtained experimentally. The calculated upper part of the trajectory, obtained from a model which gives the deflection of a jet in a crosswind, is in good agreement with experiment.


Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports

Author:

Publisher:

Published: 1995

Total Pages: 488

ISBN-13:

DOWNLOAD EBOOK

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.


Perspectives in Fluid Dynamics

Perspectives in Fluid Dynamics

Author: G. K. Batchelor

Publisher: Cambridge University Press

Published: 2003

Total Pages: 650

ISBN-13: 9780521531696

DOWNLOAD EBOOK

Paperback edition of text on fluid dynamics for graduate students and specialists alike.


Theories of Turbulence

Theories of Turbulence

Author: Martin Oberlack

Publisher: Springer

Published: 2014-05-04

Total Pages: 377

ISBN-13: 3709125642

DOWNLOAD EBOOK

The term "turbulence” is used for a large variety of dynamical phenomena of fluids in motion whenever the details of the flow appear to be random and average properties are of primary interest. Just as wide ranging are the theoretical methods that have been applied towards a better understanding of fluid turbulence. In this book a number of these methods are described and applied to a broad range of problems from the transition to turbulence to asymptotic turbulence when the inertial part of the spectrum is fully developed. Statistical as well as nonstatistical treatments are presented, but a complete coverage of the subject is not attempted. The book will be of interest to scientists and engineers who wish to familiarize themselves with modern developments in theories of turbulence. The fact that the properties of turbulent fluid flow are addressed from very different points of view makes this volume rather unique among presently available books on turbulence.


The Theory of Turbulent Jets

The Theory of Turbulent Jets

Author: Genrikh Naumovich Abramovich

Publisher: Mit Press

Published: 1963

Total Pages: 671

ISBN-13: 9780262010085

DOWNLOAD EBOOK

The author's first monograph on turbulent jets, in 1936, dealt solely with a free submerged jet. Since that time, the theory of the turbulent jet has been developed in many published works both in the USSR and abroad: it has been enriched with a large amount of experimental material and has been applied in many new fields of engineering. In the last 10 years very substantial progress has been made, and it has now become possible to go beyond the free submerged jet and to solve the problem of a jet in a stream of fluid, to take into account the interaction between the jet and solid walls, to ascertain the relationship between the contour of the jet and the ratio of its density to the density of the surrounding medium, and to establish the characteristic features of a supersonic jet. This monograph contains the results of further research by the author and his colleagues, as well as a critical reappraisal of the more important theoretical and experimental data published by other investigators. The first section deals with the theory of a turbulent jet of incompressible fluid. It gives a systematic analysis of numerous experimental data on velocity profiles, temperature, and the impurity concentration, as well as the outlines of the turbulent mixing lone. The second section sets forth the theory of turbulent gas jets, including strongly preheated and supersonic jets. The theory of free turbulence in a gas, suitable in principle for any degree of compressibility, is revised, and the equations are derived for motion and heat exchange in the boundary layer of a jet at very high temperature. The third section solves several problems of the spreading of jets in finite and semifinite space, and the fourth section describes various applications of the theory of jets, many of which are reported for the first time or have been significantly revised.