Introduction to measurement -- The one-parameter model -- Joint maximum likelihood parameter estimation -- Marginal maximum likelihood parameter estimation -- The two-parameter model -- The three-parameter model -- Rasch models for ordered polytomous data -- Non-Rasch models for ordered polytomous data -- Models for nominal polytomous data -- Models for multidimensional data -- Linking and equating -- Differential item functioning -- Multilevel IRT models.
Item response theory has become an essential component in the toolkit of every researcher in the behavioral sciences. It provides a powerful means to study individual responses to a variety of stimuli, and the methodology has been extended and developed to cover many different models of interaction. This volume presents a wide-ranging handbook to item response theory - and its applications to educational and psychological testing. It will serve as both an introduction to the subject and also as a comprehensive reference volume for practitioners and researchers. It is organized into six major sections: the nominal categories model, models for response time or multiple attempts on items, models for multiple abilities or cognitive components, nonparametric models, models for nonmonotone items, and models with special assumptions. Each chapter in the book has been written by an expert of that particular topic, and the chapters have been carefully edited to ensure that a uniform style of notation and presentation is used throughout. As a result, all researchers whose work uses item response theory will find this an indispensable companion to their work and it will be the subject's reference volume for many years to come.
A complete discussion of fundamental and advanced topics in Item Response Theory written by pioneers in the field In Item Response Theory, accomplished psychometricians Darrell Bock and Robert Gibbons deliver a comprehensive and up-to-date exploration of the theoretical foundations and applications of Item Response Theory (IRT). Covering both unidimensional and multidimensional IRT, as well as related adaptive test administration of previously calibrated item banks, the book addresses the growing need for understanding of this topic as the use of IRT spreads to other fields. The first book on the topic that offers a complete and unified treatment of its subject, Item Response Theory prepares researchers and students to understand and apply IRT and multidimensional IRT to fields like education, mental health and marketing. Accessible to first year-graduate students with a foundation in the behavioral or social sciences, basic statistics, and generalized linear models, the book walks readers through everything from the logic of IRT to cutting edge applications of the technique. Readers will also benefit from the inclusion of: • A thorough introduction to the foundations of Item Response Theory, including its logic and origins, model-based measurement, psychological scaling, and classical test theory • An exploration of selected mathematical and statistical results, including points, point sets, and set operations, probability, sampling, and joint, conditional, and marginal probability • Discussions of unidimensional and multidimensional IRT models, including item parameter estimation with binary and polytomous data • Analysis of dimensionality, differential item functioning, and multiple group IRT Perfect for graduate students and researchers studying and working with psychometrics in psychology, quantitative psychology, educational measurement, marketing, and statistics, Item Response Theory will also benefit researchers interested in patient reported outcomes in health research.
By using familiar concepts from classical measurement methods and basic statistics, this book introduces the basics of item response theory (IRT) and explains the application of IRT methods to problems in test construction, identification of potentially biased test items, test equating and computerized-adaptive testing. The book also includes a thorough discussion of alternative procedures for estimating IRT parameters and concludes with an exploration of new directions in IRT research and development.
Item Response Theory clearly describes the most recently developed IRT models and furnishes detailed explanations of algorithms that can be used to estimate the item or ability parameters under various IRT models. Extensively revised and expanded, this edition offers three new chapters discussing parameter estimation with multiple groups, parameter estimation for a test with mixed item types, and Markov chain Monte Carlo methods. It includes discussions on issues related to statistical theory, numerical methods, and the mechanics of computer programs for parameter estimation, which help to build a clear understanding of the computational demands and challenges of IRT estimation procedures.
In the decade of the 1970s, item response theory became the dominant topic for study by measurement specialists. But, the genesis of item response theory (IRT) can be traced back to the mid-thirties and early forties. In fact, the term "Item Characteristic Curve," which is one of the main IRT concepts, can be attributed to Ledyard Tucker in 1946. Despite these early research efforts, interest in item response theory lay dormant until the late 1960s and took a backseat to the emerging development of strong true score theory. While true score theory developed rapidly and drew the attention of leading psychometricians, the problems and weaknesses inherent in its formulation began to raise concerns. Such problems as the lack of invariance of item parameters across examinee groups, and the inadequacy of classical test procedures to detect item bias or to provide a sound basis for measurement in "tailored testing," gave rise to a resurgence of interest in item response theory. Impetus for the development of item response theory as we now know it was provided by Frederic M. Lord through his pioneering works (Lord, 1952; 1953a, 1953b). The progress in the fifties was painstakingly slow due to the mathematical complexity of the topic and the nonexistence of computer programs.
First thorough treatment of multidimensional item response theory Description of methods is supported by numerous practical examples Describes procedures for multidimensional computerized adaptive testing
This volume introdudes social science students and researchers to the theory and practice of the highly powerful methods of nonpatametric item response theory (IRT).
Every year roughly 100,000 fatal and injury crashes occur in the United States involving large trucks and buses. The Federal Motor Carrier Safety Administration (FMCSA) in the U.S. Department of Transportation works to reduce crashes, injuries, and fatalities involving large trucks and buses. FMCSA uses information that is collected on the frequency of approximately 900 different violations of safety regulations discovered during (mainly) roadside inspections to assess motor carriers' compliance with Federal Motor Carrier Safety Regulations, as well as to evaluate their compliance in comparison with their peers. Through use of this information, FMCSA's Safety Measurement System (SMS) identifies carriers to receive its available interventions in order to reduce the risk of crashes across all carriers. Improving Motor Carrier Safety Measurement examines the effectiveness of the use of the percentile ranks produced by SMS for identifying high-risk carriers, and if not, what alternatives might be preferred. In addition, this report evaluates the accuracy and sufficiency of the data used by SMS, to assess whether other approaches to identifying unsafe carriers would identify high-risk carriers more effectively, and to reflect on how members of the public use the SMS and what effect making the SMS information public has had on reducing crashes.
This comprehensive Handbook focuses on the most used polytomous item response theory (IRT) models. These models help us understand the interaction between examinees and test questions where the questions have various response categories. The book reviews all of the major models and includes discussions about how and where the models originated, conceptually and in practical terms. Diverse perspectives on how these models can best be evaluated are also provided. Practical applications provide a realistic account of the issues practitioners face using these models. Disparate elements of the book are linked through editorial sidebars that connect common ideas across chapters, compare and reconcile differences in terminology, and explain variations in mathematical notation. These sidebars help to demonstrate the commonalities that exist across the field. By assembling this critical information, the editors hope to inspire others to use polytomous IRT models in their own research so they too can achieve the type of improved measurement that such models can provide. Part 1 examines the most commonly used polytomous IRT models, major issues that cut across these models, and a common notation for calculating functions for each model. An introduction to IRT software is also provided. Part 2 features distinct approaches to evaluating the effectiveness of polytomous IRT models in various measurement contexts. These chapters appraise evaluation procedures and fit tests and demonstrate how to implement these procedures using IRT software. The final section features groundbreaking applications. Here the goal is to provide solutions to technical problems to allow for the most effective use of these models in measuring educational, psychological, and social science abilities and traits. This section also addresses the major issues encountered when using polytomous IRT models in computerized adaptive testing. Equating test scores across different testing contexts is the focus of the last chapter. The various contexts include personality research, motor performance, health and quality of life indicators, attitudes, and educational achievement. Featuring contributions from the leading authorities, this handbook will appeal to measurement researchers, practitioners, and students who want to apply polytomous IRT models to their own research. It will be of particular interest to education and psychology assessment specialists who develop and use tests and measures in their work, especially researchers in clinical, educational, personality, social, and health psychology. This book also serves as a supplementary text in graduate courses on educational measurement, psychometrics, or item response theory.