This book tackles head-on the challenges of digital design in the era of billion-transistor SoCs. It discusses fundamental design concepts in design and coding required to produce robust, functionally correct designs. It also provides specific techniques for measuring and minimizing complexity in RTL code. Finally, it discusses the tradeoff between RTL and high-level (C-based) design and how tools and languages must progress to address the needs of tomorrow’s SoC designs.
The two-volume set LNICST 236-237 constitutes the post-conference proceedings of the 12th EAI International Conference on Communications and Networking, ChinaCom 2017, held in Xi’an, China, in September 2017. The total of 112 contributions presented in these volumes are carefully reviewed and selected from 178 submissions. The papers are organized in topical sections on wireless communications and networking, satellite and space communications and networking, big data network track, multimedia communications and smart networking, signal processing and communications, network and information security, advances and trends of V2X networks.
This book constitutes the proceedings of the 22nd International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2016, which took place in Eindhoven, The Netherlands, in April 2016, held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016. The 44 full papers presented in this volume were carefully reviewed and selected from 175 submissions. They were organized in topical sections named: abstraction and verification; probabilistic and stochastic systems; synthesis; tool papers; concurrency; tool demos; languages and automata; security; optimization; and competition on software verification – SV-COMP.
Microprocessor cores used for SOC design are the direct descendents of Intel's original 4004 microprocessor. Just as packaged microprocessor ICs vary widely in their attributes, so do microprocessors packaged as IP cores. However, SOC designers still compare and select processor cores the way they previously compared and selected packaged microprocessor ICs. The big problem with this selection method is that it assumes that the laws of the microprocessor universe have remained unchanged for decades. This assumption is no longer valid.Processor cores for SOC designs can be far more plastic than microprocessor ICs for board-level system designs. Shaping these cores for specific applications produces much better processor efficiency and much lower system clock rates. Together, Tensilica's Xtensa and Diamond processor cores constitute a family of software-compatible microprocessors covering an extremely wide performance range from simple control processors, to DSPs, to 3-way superscalar processors. Yet all of these processors use the same software-development tools so that programmers familiar with one processor in the family can easily switch to another.This book emphasizes a processor-centric MPSOC (multiple-processor SOC) design style shaped by the realities of the 21st-century and nanometer silicon. It advocates the assignment of tasks to firmware-controlled processors whenever possible to maximize SOC flexibility, cut power dissipation, reduce the size and number of hand-built logic blocks, shrink the associated verification effort, and minimize the overall design risk.· An essential, no-nonsense guide to the design of 21st-century mega-gate SOCs using nanometer silicon.· Discusses today's key issues affecting SOC design, based on author's decades of personal experience in developing large digital systems as a design engineer while working at Hewlett-Packard's Desktop Computer Division and at EDA workstation pioneer Cadnetix, and covering such topics as an award-winning technology journalist and editor-in-chief for EDN magazine and the Microprocessor Report.· Explores conventionally accepted boundaries and perceived limits of processor-based system design and then explodes these artificial constraints through a fresh outlook on and discussion of the special abilities of processor cores designed specifically for SOC design.· Thorough exploration of the evolution of processors and processor cores used for ASIC and SOC design with a look at where the industry has come from, and where it's going.· Easy-to-understand explanations of the capabilities of configurable and extensible processor cores through a detailed examination of Tensilica's configurable, extensible Xtensa processor core and six pre-configured Diamond cores.· The most comprehensive assessment available of the practical aspects of configuring and using multiple processor cores to achieve very difficult and ambitious SOC price, performance, and power design goals.
This book deals with a practical approach to defining a system on a chip (SoC) architecture. It is written by practicing industry experts with cumulative five decades of hands-on experience. The book discusses how the system-level design challenges are addressed at the architecture stage and clearly defines different SoC subsystems and components. The book explains the practical method of determining system subsystems in system architectures. System on Chip (SOC) Architecture: A Practical Approach provides readers with a complete understanding of methods for defining SoC architecture.
This book contains extended and revised versions of the best papers presented at the 29th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2021, held in Singapore, in October 2021*. The 12 full papers included in this volume were carefully reviewed and selected from the 44 papers (out of 75 submissions) presented at the conference. The papers discuss the latest academic and industrial results and developments as well as future trends in the field of System-on-Chip (SoC) design, considering the challenges of nano-scale, state-of-the-art and emerging manufacturing technologies. In particular they address cutting-edge research fields like low-power design of RF, analog and mixed-signal circuits, EDA tools for the synthesis and verification of heterogenous SoCs, accelerators for cryptography and deep learning and on-chip Interconnection system, reliability and testing, and integration of 3D-ICs. *The conference was held virtually.
This book contains extended and revised versions of the best papers presented at the 23rd IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2015, held in Daejeon, Korea, in October 2015. The 10 papers included in the book were carefully reviewed and selected from the 44 full papers presented at the conference. The papers cover a wide range of topics in VLSI technology and advanced research. They address the current trend toward increasing chip integration and technology process advancements bringing about new challenges both at the physical and system-design levels, as well as in the test of these systems.
An emerging trend in the automobile industry is its convergence with information technology (IT). Indeed, it has been estimated that almost 90% of new automobile technologies involve IT in some form. Smart driving technologies that improve safety as well as green fuel technologies are quite representative of the convergence between IT and automobiles. The smart driving technologies include three key elements: sensing of driving environments, detection of objects and potential hazards and the generation of driving control signals including warning signals. Although radar-based systems are primarily used for sensing the driving environments, the camera has gained importance in advanced driver assistance systems (ADAS). This book covers system-on-a-chip (SoC) designs—including both algorithms and hardware—related with image sensing and object detection by using the camera for smart driving systems. It introduces a variety of algorithms such as lens correction, super resolution, image enhancement and object detections from the images captured by low-cost vehicle camera. This is followed by implementation issues such as SoC architecture, hardware accelerator, software development environment and reliability techniques for automobile vision systems. This book is aimed for the new and practicing engineers in automotive and chip-design industries to provide some overall guidelines for the development of automotive vision systems. It will also help graduate students understand and get started for the research work in this field.
This book contains extended and revised versions of the best papers presented at the 28th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2020, held in Salt Lake City, UT, USA, in October 2020.* The 16 full papers included in this volume were carefully reviewed and selected from the 38 papers (out of 74 submissions) presented at the conference. The papers discuss the latest academic and industrial results and developments as well as future trends in the field of System-on-Chip (SoC) design, considering the challenges of nano-scale, state-of-the-art and emerging manufacturing technologies. In particular they address cutting-edge research fields like low-power design of RF, analog and mixed-signal circuits, EDA tools for the synthesis and verification of heterogenous SoCs, accelerators for cryptography and deep learning and on-chip Interconnection system, reliability and testing, and integration of 3D-ICs. *The conference was held virtually.