A Short Course in Foundation Engineering discusses methods for predicting the failure loads, and the deformations at working loads, of piled and non-piled foundations. The first chapter covers the definition, principle, and computation of effective stress. Chapter 2 discusses the nature and measurement of shear stress. Chapter 3 deals with the concerns in immediate settlements, such as elastic stress distributions, heave of excavations, and estimates of undrained modulus. Chapter 4 tackles the bearing capacity of footings, while Chapter 5 talks about settlement analysis. The last chapter covers piled foundations. The book will be of great use to civil engineers who wish to have a better understanding of foundation engineering.
This is the third volume of a handbook which covers the whole field of soil mechanics, discussing deterministic and stochastic theories and methods, and showing how they can be used in conjunction with one another. The first volume discusses soil physics, while the second deals with the determination of physical characteristics of the soil. Australian Mining wrote of the Handbook ``a valuable addition to the extensive literature on the topic and will be found to be more useful than most.''The main objective of the third volume is to present solutions to the problems of engineering practice. It deals with the most important theoretical and practical problems of soil mechanics, discussing the following in detail: stability of earthworks, load-bearing capacity and settlement of shallow foundations, design of pile foundations, soil mechanics in road construction, improving the physical properties of soils, the characteristics of soil dynamics, foundations for machines and soil behaviour as affected by earthquakes. The book not only presents up-to-date deterministic methods, but also discusses solutions of probability theory in the fields of design and safety.The book is divided into six chapters covering the stability of slopes, landslides, load-bearing capacity and settlement of shallow foundations and pile foundations, soil mechanics in road construction, and the improvement of the physical characteristics of soil with special emphasis on machine foundations and earthquakes, giving detailed treatment of each subject. For example, the first chapter deals not only with the stability of slopes, but also discusses the natural and artificial effects, slope protection, filter design, stresses in embankments, and the time factor. In this way, the book gives a clear and comprehensive picture of the special fields of soil mechanics and its subjects. It is therefore emminently suitable for postgraduate engineers, and engineers working in the fields of geotechnics, earthworks, foundations, road construction, engineering geology and statistics, and the design of structures.
This abstracts volume (including full keynote and invited papers) contains the proceedings of the 5th International Symposium on Cone Penetration Testing (CPT’22), held in Bologna, Italy, 8-10 June 2022. More than 500 authors - academics, researchers, practitioners and manufacturers – contributed to the peer-reviewed papers included in this book, which includes three keynote lectures, four invited lectures and 169 technical papers. The contributions provide a full picture of the current knowledge and major trends in CPT research and development, with respect to innovations in instrumentation, latest advances in data interpretation, and emerging fields of CPT application. The paper topics encompass three well-established topic categories typically addressed in CPT events: - Equipment and Procedures - Data Interpretation - Applications. Emphasis is placed on the use of statistical approaches and innovative numerical strategies for CPT data interpretation, liquefaction studies, application of CPT to offshore engineering, comparative studies between CPT and other in-situ tests. Cone Penetration Testing 2022 contains a wealth of information that could be useful for researchers, practitioners and all those working in the broad and dynamic field of cone penetration testing.
The 16th ICSMGE responds to the needs of the engineering and construction community, promoting dialog and exchange between academia and practice in various aspects of soil mechanics and geotechnical engineering. This is reflected in the central theme of the conference 'Geotechnology in Harmony with the Global Environment'. The proceedings of the conference are of great interest for geo-engineers and researchers in soil mechanics and geotechnical engineering. Volume 1 contains 5 plenary session lectures, the Terzaghi Oration, Heritage Lecture, and 3 papers presented in the major project session. Volumes 2, 3, and 4 contain papers with the following topics: Soil mechanics in general; Infrastructure and mobility; Environmental issues of geotechnical engineering; Enhancing natural disaster reduction systems; Professional practice and education. Volume 5 contains the report of practitioner/academic forum, 20 general reports, a summary of the sessions and workshops held during the conference.
Model Uncertainties in Foundation Design is unique in the compilation of the largest and the most diverse load test databases to date, covering many foundation types (shallow foundations, spudcans, driven piles, drilled shafts, rock sockets and helical piles) and a wide range of ground conditions (soil to soft rock). All databases with names prefixed by NUS are available upon request. This book presents a comprehensive evaluation of the model factor mean (bias) and coefficient of variation (COV) for ultimate and serviceability limit state based on these databases. These statistics can be used directly for AASHTO LRFD calibration. Besides load test databases, performance databases for other geo-structures and their model factor statistics are provided. Based on this extensive literature survey, a practical three-tier scheme for classifying the model uncertainty of geo-structures according to the model factor mean and COV is proposed. This empirically grounded scheme can underpin the calibration of resistance factors as a function of the degree of understanding – a concept already adopted in the Canadian Highway Bridge Design Code and being considered for the new draft for Eurocode 7 Part 1 (EN 1997-1:202x). The helical pile research in Chapter 7 was recognised by the 2020 ASCE Norman Medal.