The Separable Galois Theory of Commutative Rings

The Separable Galois Theory of Commutative Rings

Author: Andy R. Magid

Publisher: CRC Press

Published: 2014-07-14

Total Pages: 184

ISBN-13: 1482208067

DOWNLOAD EBOOK

The Separable Galois Theory of Commutative Rings, Second Edition provides a complete and self-contained account of the Galois theory of commutative rings from the viewpoint of categorical classification theorems and using solely the techniques of commutative algebra. Along with updating nearly every result and explanation, this edition contains a n


Separable Algebras over Commutative Rings

Separable Algebras over Commutative Rings

Author: Frank De Meyer

Publisher: Springer

Published: 2006-11-15

Total Pages: 162

ISBN-13: 3540364846

DOWNLOAD EBOOK

These lecture notes were prepared by the authors for use in graduate courses and seminars, based on the work of many earlier mathematicians. In addition to very elementary results, presented for the convenience of the reader, Chapter I contains the Morita theorems and the definition of the projective class group of a commutative ring. Chapter II addresses the Brauer group of a commutative ring, and automorphisms of separable algebras. Chapter III surveys the principal theorems of the Galois theory for commutative rings. In Chapter IV the authors present a direct derivation of the first six terms of the seven-term exact sequence for Galois cohomology. In the fifth and final chapter the authors illustrate the preceding material with applications to the structure of central simple algebras and the Brauer group of a Dedekind domain, and they pose problems for further investigation. Exercises are included at the end of each chapter.


Encyclopaedia of Mathematics

Encyclopaedia of Mathematics

Author: Michiel Hazewinkel

Publisher: Springer Science & Business Media

Published: 1988

Total Pages: 540

ISBN-13: 9781556080036

DOWNLOAD EBOOK

V.1. A-B v.2. C v.3. D-Feynman Measure. v.4. Fibonaccimethod H v.5. Lituus v.6. Lobachevskii Criterion (for Convergence)-Optical Sigman-Algebra. v.7. Orbi t-Rayleigh Equation. v.8. Reaction-Diffusion Equation-Stirling Interpolation Fo rmula. v.9. Stochastic Approximation-Zygmund Class of Functions. v.10. Subject Index-Author Index.


Galois Connections and Applications

Galois Connections and Applications

Author: K. Denecke

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 511

ISBN-13: 1402018983

DOWNLOAD EBOOK

Galois connections provide the order- or structure-preserving passage between two worlds of our imagination - and thus are inherent in hu man thinking wherever logical or mathematical reasoning about cer tain hierarchical structures is involved. Order-theoretically, a Galois connection is given simply by two opposite order-inverting (or order preserving) maps whose composition yields two closure operations (or one closure and one kernel operation in the order-preserving case). Thus, the "hierarchies" in the two opposite worlds are reversed or transported when passing to the other world, and going forth and back becomes a stationary process when iterated. The advantage of such an "adjoint situation" is that information about objects and relationships in one of the two worlds may be used to gain new information about the other world, and vice versa. In classical Galois theory, for instance, properties of permutation groups are used to study field extensions. Or, in algebraic geometry, a good knowledge of polynomial rings gives insight into the structure of curves, surfaces and other algebraic vari eties, and conversely. Moreover, restriction to the "Galois-closed" or "Galois-open" objects (the fixed points of the composite maps) leads to a precise "duality between two maximal subworlds".


Galois Theories

Galois Theories

Author: Francis Borceux

Publisher: Cambridge University Press

Published: 2001-02-22

Total Pages: 360

ISBN-13: 9780521803090

DOWNLOAD EBOOK

Starting from the classical finite-dimensional Galois theory of fields, this book develops Galois theory in a much more general context, presenting work by Grothendieck in terms of separable algebras and then proceeding to the infinite-dimensional case, which requires considering topological Galois groups. In the core of the book, the authors first formalize the categorical context in which a general Galois theorem holds, and then give applications to Galois theory for commutative rings, central extensions of groups, the topological theory of covering maps and a Galois theorem for toposes. The book is designed to be accessible to a wide audience: the prerequisites are first courses in algebra and general topology, together with some familiarity with the categorical notions of limit and adjoint functors. The first chapters are accessible to advanced undergraduates, with later ones at a graduate level. For all algebraists and category theorists this book will be a rewarding read.


Quadratic Forms Over Q and Galois Extensions of Commutative Rings

Quadratic Forms Over Q and Galois Extensions of Commutative Rings

Author: Frank DeMeyer

Publisher: American Mathematical Soc.

Published: 1989

Total Pages: 73

ISBN-13: 0821824570

DOWNLOAD EBOOK

The object of the first two sections of this memoir is to give explicit descriptions of both the Witt ring of the rational numbers [bold]Q and the set of abelian extensions of [bold]Q. The third presents a discussion around a particular case of the Galois cubic extension, building on the general theory.


Galois Extensions of Structured Ring Spectra/Stably Dualizable Groups

Galois Extensions of Structured Ring Spectra/Stably Dualizable Groups

Author: John Rognes

Publisher: American Mathematical Soc.

Published: 2008

Total Pages: 154

ISBN-13: 0821840762

DOWNLOAD EBOOK

The author introduces the notion of a Galois extension of commutative $S$-algebras ($E_\infty$ ring spectra), often localized with respect to a fixed homology theory. There are numerous examples, including some involving Eilenberg-Mac Lane spectra of commutative rings, real and complex topological $K$-theory, Lubin-Tate spectra and cochain $S$-algebras. He establishes the main theorem of Galois theory in this generality. Its proof involves the notions of separable and etale extensions of commutative $S$-algebras, and the Goerss-Hopkins-Miller theory for $E_\infty$ mapping spaces. He shows that the global sphere spectrum $S$ is separably closed, using Minkowski's discriminant theorem, and he estimates the separable closure of its localization with respect to each of the Morava $K$-theories. He also defines Hopf-Galois extensions of commutative $S$-algebras and studies the complex cobordism spectrum $MU$ as a common integral model for all of the local Lubin-Tate Galois extensions. The author extends the duality theory for topological groups from the classical theory for compact Lie groups, via the topological study by J. R. Klein and the $p$-complete study for $p$-compact groups by T. Bauer, to a general duality theory for stably dualizable groups in the $E$-local stable homotopy category, for any spectrum $E$.


Finite Commutative Rings and Their Applications

Finite Commutative Rings and Their Applications

Author: Gilberto Bini

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 181

ISBN-13: 1461509572

DOWNLOAD EBOOK

Foreword by Dieter Jungnickel Finite Commutative Rings and their Applications answers a need for an introductory reference in finite commutative ring theory as applied to information and communication theory. This book will be of interest to both professional and academic researchers in the fields of communication and coding theory. The book is a concrete and self-contained introduction to finite commutative local rings, focusing in particular on Galois and Quasi-Galois rings. The reader is provided with an active and concrete approach to the study of the purely algebraic structure and properties of finite commutative rings (in particular, Galois rings) as well as to their applications to coding theory. Finite Commutative Rings and their Applications is the first to address both theoretical and practical aspects of finite ring theory. The authors provide a practical approach to finite rings through explanatory examples, thereby avoiding an abstract presentation of the subject. The section on Quasi-Galois rings presents new and unpublished results as well. The authors then introduce some applications of finite rings, in particular Galois rings, to coding theory, using a solid algebraic and geometric theoretical background.