The Role of Nuclear Power and Nuclear Propulsion in the Peaceful Exploration of Space

The Role of Nuclear Power and Nuclear Propulsion in the Peaceful Exploration of Space

Author: International Atomic Energy Agency

Publisher: IAEA

Published: 2005

Total Pages: 152

ISBN-13:

DOWNLOAD EBOOK

Provides details of a variety of radioisotope power systems, shows in what circumstances they surpass other power systems, and provides the history of the space missions in which they have been employed. The book also summarizes the use of on-board reactors and the testing done on reactor rocket thrusters.


Space Nuclear Propulsion for Human Mars Exploration

Space Nuclear Propulsion for Human Mars Exploration

Author: National Academies of Sciences Engineering and Medicine

Publisher:

Published: 2021-11-12

Total Pages:

ISBN-13: 9780309684804

DOWNLOAD EBOOK

Space Nuclear Propulsion for Human Mars Exploration identifies primary technical and programmatic challenges, merits, and risks for developing and demonstrating space nuclear propulsion technologies of interest to future exploration missions. This report presents key milestones and a top-level development and demonstration roadmap for performance nuclear thermal propulsion and nuclear electric propulsion systems and identifies missions that could be enabled by successful development of each technology.


Radioisotope Power Systems

Radioisotope Power Systems

Author: National Research Council

Publisher: National Academies Press

Published: 2009-08-14

Total Pages: 68

ISBN-13: 0309138574

DOWNLOAD EBOOK

Spacecraft require electrical energy. This energy must be available in the outer reaches of the solar system where sunlight is very faint. It must be available through lunar nights that last for 14 days, through long periods of dark and cold at the higher latitudes on Mars, and in high-radiation fields such as those around Jupiter. Radioisotope power systems (RPSs) are the only available power source that can operate unconstrained in these environments for the long periods of time needed to accomplish many missions, and plutonium-238 (238Pu) is the only practical isotope for fueling them. Plutonium-238 does not occur in nature. The committee does not believe that there is any additional 238Pu (or any operational 238Pu production facilities) available anywhere in the world.The total amount of 238Pu available for NASA is fixed, and essentially all of it is already dedicated to support several pending missions-the Mars Science Laboratory, Discovery 12, the Outer Planets Flagship 1 (OPF 1), and (perhaps) a small number of additional missions with a very small demand for 238Pu. If the status quo persists, the United States will not be able to provide RPSs for any subsequent missions.


Nuclear Power and Sustainable Development

Nuclear Power and Sustainable Development

Author: International Atomic Energy Agency

Publisher:

Published: 2016

Total Pages: 0

ISBN-13: 9789201070166

DOWNLOAD EBOOK

Transforming the energy system is at the core of the dedicated sustainable development goal on energy within the new United Nations development agenda. This publication explores the possible contribution of nuclear energy to addressing the issues of sustainable development through a large selection of indicators. It reviews the characteristics of nuclear power in comparison with alternative sources of electricity supply, according to economic, social and environmental pillars of sustainability. The findings summarized in this publication will help the reader to consider, or reconsider, the contribution that can be made by the development and operation of nuclear power plants in contributing to more sustainable energy systems.


Uranium Enrichment and Nuclear Weapon Proliferation

Uranium Enrichment and Nuclear Weapon Proliferation

Author: Allan S. Krass

Publisher: Routledge

Published: 2020-11-20

Total Pages: 325

ISBN-13: 100020054X

DOWNLOAD EBOOK

Originally published in 1983, this book presents both the technical and political information necessary to evaluate the emerging threat to world security posed by recent advances in uranium enrichment technology. Uranium enrichment has played a relatively quiet but important role in the history of efforts by a number of nations to acquire nuclear weapons and by a number of others to prevent the proliferation of nuclear weapons. For many years the uranium enrichment industry was dominated by a single method, gaseous diffusion, which was technically complex, extremely capital-intensive, and highly inefficient in its use of energy. As long as this remained true, only the richest and most technically advanced nations could afford to pursue the enrichment route to weapon acquisition. But during the 1970s this situation changed dramatically. Several new and far more accessible enrichment techniques were developed, stimulated largely by the anticipation of a rapidly growing demand for enrichment services by the world-wide nuclear power industry. This proliferation of new techniques, coupled with the subsequent contraction of the commercial market for enriched uranium, has created a situation in which uranium enrichment technology might well become the most important contributor to further nuclear weapon proliferation. Some of the issues addressed in this book are: A technical analysis of the most important enrichment techniques in a form that is relevant to analysis of proliferation risks; A detailed projection of the world demand for uranium enrichment services; A summary and critique of present institutional non-proliferation arrangements in the world enrichment industry, and An identification of the states most likely to pursue the enrichment route to acquisition of nuclear weapons.


Reducing the Use of Highly Enriched Uranium in Civilian Research Reactors

Reducing the Use of Highly Enriched Uranium in Civilian Research Reactors

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2016-02-12

Total Pages: 205

ISBN-13: 0309379210

DOWNLOAD EBOOK

The continued presence of highly enriched uranium (HEU) in civilian installations such as research reactors poses a threat to national and international security. Minimization, and ultimately elimination, of HEU in civilian research reactors worldwide has been a goal of U.S. policy and programs since 1978. Today, 74 civilian research reactors around the world, including 8 in the United States, use or are planning to use HEU fuel. Since the last National Academies of Sciences, Engineering, and Medicine report on this topic in 2009, 28 reactors have been either shut down or converted from HEU to low enriched uranium fuel. Despite this progress, the large number of remaining HEU-fueled reactors demonstrates that an HEU minimization program continues to be needed on a worldwide scale. Reducing the Use of Highly Enriched Uranium in Civilian Research Reactors assesses the status of and progress toward eliminating the worldwide use of HEU fuel in civilian research and test reactors.


Movement And Maneuver In Deep Space

Movement And Maneuver In Deep Space

Author: Brian E. Hans

Publisher:

Published: 2020-11-24

Total Pages: 74

ISBN-13: 9781608881932

DOWNLOAD EBOOK

From the authors' abstract: "This analytical study looks at the importance of Deep Space Operations and recommends an approach for senior policy leaders. Section 1 presents a capability requirements definition with candidate solutions and technology strategies. Section 2 recommends an acquisition and organizational approach. Section 3 provides an extended strategic rationale for deep space operations as a national priority." And from the Introduction: [this essay] "presents capability requirements, potential solutions, and strategic rationale for achieving movement and maneuver advantage in deep space. In this context, deep space is anything beyond geosynchronous Earth orbit (GEO). Driving the research are two primary assumptions underpinning the need for investment in deep space propulsion. The first assumption is that growing international activity, commerce, and industry in space extends the global commons, thus creating a military-economic imperative for the United States Department of Defense (DoD) to expand its protection of U.S. interests by defending space lines of communication. Although there are wide-ranging reasons to expand the space-faring capabilities of the human species, from the capitalistic to the existential, the fact of its occurrence offers the U.S. immense strategic opportunity. Section 1, operating on this assumption, recommends capability-based requirements for deep space operations given a projected future operating environment.The second driving assumption underpinning this study is that improved movement and maneuver capabilities in deep space offer a wide array of benefits for the current National Security Enterprise, and for this reason alone demands attention in the form of disciplined investment. Furthermore, because the core functional capability required for deep space operations is in-space propulsion, the requirement necessitates a materiel solution.


A Constrained Space Exploration Technology Program

A Constrained Space Exploration Technology Program

Author: National Research Council

Publisher: National Academies Press

Published: 2008-12-29

Total Pages: 154

ISBN-13: 0309178126

DOWNLOAD EBOOK

In January 2004, President George W. Bush announced the Vision for Space Exploration (VSE), which instructed NASA to "Extend human presence across the solar system, starting with a human return to the Moon by the year 2020, in preparation for human exploration of Mars and other destinations," among other objectives. As acknowledged in the VSE, significant technology development will be necessary to accomplish the goals it articulates. NASA's Exploration Technology Development Program (ETDP) is designed to support, develop, and ultimately provide the necessary technologies to meet the goals of the VSE. This book, a review of the ETDP, is broadly supportive of the intent and goals of the VSE, and finds the ETDP is making progress towards the stated goals of technology development. However, the ETDP is operating within significant constraints which limit its ability to successfully accomplish those goals-the still dynamic nature of the Constellation Program requirements, the constraints imposed by a limited budget, the aggressive time scale of early technology deliverables, and the desire to fully employ the NASA workforce.


The Technological and Economic Future of Nuclear Power

The Technological and Economic Future of Nuclear Power

Author: Reinhard Haas

Publisher: Springer

Published: 2019-04-26

Total Pages: 382

ISBN-13: 3658259876

DOWNLOAD EBOOK

This open access book discusses the eroding economics of nuclear power for electricity generation as well as technical, legal, and political acceptance issues. The use of nuclear power for electricity generation is still a heavily disputed issue. Aside from technical risks, safety issues, and the unsolved problem of nuclear waste disposal, the economic performance is currently a major barrier. In recent years, the costs have skyrocketed especially in the European countries and North America. At the same time, the costs of alternatives such as photovoltaics and wind power have significantly decreased.