MicroRNA (miRNA) biology is a cutting-edge topic in basic as well as biomedical research. This is a specialized book focusing on the current understanding of the role of miRNAs in the development, progression, invasion, and metastasis of diverse types of cancer. It also reviews their potential for applications in cancer diagnosis, prognosis, and th
microRNAs (miRNAs) are small non-coding RNAs that regulate various biological phenomena, such as development and homeostasis. The dysregulation of miRNA leads to disease progression, particularly of cancer. In Circulating MicroRNAs: Methods and Protocols, expert researchers in the field detail recent advances in the isolation, purification and analysis of circulating miRNAs from a variety of sources for research. The book is divided into three main topics. The first section involves the study of secretory miRNAs in cell-cell communication, and the second, the study of circulating miRNAs in body fluids. The last describes the novel techniques used to study circulating miRNAs. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Circulating MicroRNAs: Methods and Protocols seeks to aid scientists in dealing with the recent advances of RNAi technology from the bench to the bedside.
This new volume of Current Topics in Developmental Biology covers developmental timing, with contributions from an international board of authors. The chapters provide a comprehensive set of reviews covering such topics as the timing of developmental programs in Drosophila, temporal patterning of neural progenitors, and environmental modulation of developmental timing.
In miRNomics: MicroRNA Biology and Computational Analysis, expert researchers in the field present an overview of the current state of the art and aim to put the respective areas of research into a larger perspective. These include methods and techniques ranging from miRNA biogenesis, their biological function, computational analyses to their medical implications and applications. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, miRNomics: MicroRNA Biology and Computational Analysis seeks to aid scientists in the further study into miRNA research and statistics.
The world is faced with an epidemic of metabolic diseases such as obesity and type 2 diabetes. This is due to changes in dietary habits and the decrease in physical activity. Exercise is usually part of the prescription, the first line of defense, to prevent or treat metabolic disorders. However, we are still learning how and why exercise provides metabolic benefits in human health. This open access volume focuses on the cellular and molecular pathways that link exercise, muscle biology, hormones and metabolism. This will include novel “myokines” that might act as new therapeutic agents in the future.
This book includes updated information about microRNA regulation, for example, in the fields of circular RNAs, multiomics analysis, biomarkers and oncogenes. The variety of topics included in this book reaffirms the extent to which microRNA regulation affects biological processes. Although microRNAs are not translated to proteins, their importance for biological processes is not less than proteins. An understanding of their roles in various biological processes is critical to understanding gene function in these biological processes. Although non-coding RNAs other than microRNAs have recently come under investigation, microRNA still remains the front runner as the subject of genetic and biological studies. In reading the collection of papers, readers can grasp the most updated information regarding microRNA regulation, which will continue to be an important topic in genetics and biology.
This thorough volume provides an in-depth introduction to and discussion of microRNAs (miRs) and their targets, miR functions, and computational techniques applied in miR research, thus serving the need for a comprehensive book focusing on miR target genes, miR regulation mechanisms, miR functions performed in various human diseases, and miR databases/knowledgebases. Without prior knowledge of the area of study, computational biologists, computer scientists, bioinformaticians, bench biologists, as well as clinical investigators will find it easy to follow the techniques in this collection. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of detailed implementation advice that ensures successful results. Accessible and practical, Bioinformatics in MicroRNA Research functions as an ideal guide for researchers of all backgrounds to explore this vital area of study.
MicroRNAs have recently emerged as key regulators of gene expression during development and are frequently misexpressed in human disease states, in particular cancer. These 22-nucleotide-long transcripts act to promote or repress cell proliferation, migration and apoptosis during development, all of which are processes that go awry in cancer. Thus, microRNAs have the ability to behave like oncogenes or tumor suppressors. In addition, their small size and molecular properties make them amenable as targets and therapeutics in cancer treatment. This book goes into detail on how microRNAs represent a paradigm shift in thinking about gene regulation during development and disease, and provide the oncologist with a potentially powerful new battery of agents to diagnose and treat cancer.
There is now compelling evidence that the complexity of higher organisms correlates with the relative amount of non-coding RNA rather than the number of protein-coding genes. Previously dismissed as “junk DNA”, it is the non-coding regions of the genome that are responsible for regulation, facilitating complex temporal and spatial gene expression through the combinatorial effect of numerous mechanisms and interactions working together to fine-tune gene expression. The major regions involved in regulation of a particular gene are the 5’ and 3’ untranslated regions and introns. In addition, pervasive transcription of complex genomes produces a variety of non-coding transcripts that interact with these regions and contribute to regulation. This book discusses recent insights into the regulatory roles of the untranslated gene regions and non-coding RNAs in the control of complex gene expression, as well as the implications of this in terms of organism complexity and evolution.