"Through a series of examples drawn from biology, climate science, geology, environmental science, and other disciplines, the chapters in this book demystify the process of science, and the work that scientists do. The authors highlight the many methods used in science and the common characteristics that unite them all as "science". The examples illustrate that science is a human endeavor, and research is enriched and enlivened by the diversity of scientists themselves. This book is an excellent companion to any college-level introductory science course, emphasizing how we know what we know. It will also serve as an invaluable resource for undergraduate students preparing to do research for the first time or for anyone who might be interested in learning more about the process of science and scientific research. -- Book blurb.
"Legend is overdue for replacement, and an adequate replacement must attend to the process of science as carefully as Hull has done. I share his vision of a serious account of the social and intellectual dynamics of science that will avoid both the rosy blur of Legend and the facile charms of relativism. . . . Because of [Hull's] deep concern with the ways in which research is actually done, Science as a Process begins an important project in the study of science. It is one of a distinguished series of books, which Hull himself edits."—Philip Kitcher, Nature "In Science as a Process, [David Hull] argues that the tension between cooperation and competition is exactly what makes science so successful. . . . Hull takes an unusual approach to his subject. He applies the rules of evolution in nature to the evolution of science, arguing that the same kinds of forces responsible for shaping the rise and demise of species also act on the development of scientific ideas."—Natalie Angier, New York Times Book Review "By far the most professional and thorough case in favour of an evolutionary philosophy of science ever to have been made. It contains excellent short histories of evolutionary biology and of systematics (the science of classifying living things); an important and original account of modern systematic controversy; a counter-attack against the philosophical critics of evolutionary philosophy; social-psychological evidence, collected by Hull himself, to show that science does have the character demanded by his philosophy; and a philosophical analysis of evolution which is general enough to apply to both biological and historical change."—Mark Ridley, Times Literary Supplement "Hull is primarily interested in how social interactions within the scientific community can help or hinder the process by which new theories and techniques get accepted. . . . The claim that science is a process for selecting out the best new ideas is not a new one, but Hull tells us exactly how scientists go about it, and he is prepared to accept that at least to some extent, the social activities of the scientists promoting a new idea can affect its chances of being accepted."—Peter J. Bowler, Archives of Natural History "I have been doing philosophy of science now for twenty-five years, and whilst I would never have claimed that I knew everything, I felt that I had a really good handle on the nature of science, Again and again, Hull was able to show me just how incomplete my understanding was. . . . Moreover, [Science as a Process] is one of the most compulsively readable books that I have ever encountered."—Michael Ruse, Biology and Philosophy
This book newly articulates the international and interdisciplinary reach of Whitehead’s organic process cosmology for a variety of topics across science and philosophy, and in dialogue with a variety historical and contemporary voices. Integrating Whitehead’s thought with the insights of Bergson, James, Pierce, Merleau-Ponty, Descola, Fuchs, Hofmann, Grof and many others, contributors from around the world reveal the relevance of process philosophy to physics, cosmology, astrobiology, ecology, metaphysics, aesthetics, psychedelics, and religion. A global collection, this book expresses multivocal possibilities for the development of process cosmology after Whitehead.
What does E=mc2 really mean? What is DNA? What was the big bang? These scientific concepts have changed our perception of the world…but for many of us they remain mysteries, bits and pieces of information retained from classroom lectures but never truly understood. Now we can finally grasp the grandeur and complexity of these ideas, and their significance in our lives. Revised and updated to include the latest discoveries that are changing the way we view the world and the universe, this new edition of The Science Class You Wish You Had will take you on a journey through space and time—from the subatomic to the universal. It explains in a lively, accessible way what these milestones of scientific discovery mean and what direct impact they have on our lives today and will have in the future. For everyone interested in science, history, and biographies of extraordinary people—or anyone who wants to understand the workings of the physical world—this thorough and authoritative book is a perfect introduction to science’s most profound discoveries, and a testament to the triumph of human knowledge. Newton: Gravity and the Basic Laws of Physics Rutherford and Bohr: The Structure of the Atom Einstein: The Principle of Relativity Hubble: The Big Bang and the Formation of the Universe Darwin: Evolution and the Principle of Natural Selection Flemming and Mendel: The Cell and Genetics Watson and Crick: The Structure of the DNA Molecule
Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.
Ten years after the publication of the first edition of Fundamentals of Food Process Engineering, there have been significant changes in both food science education and the food industry itself. Students now in the food science curric ulum are generally better prepared mathematically than their counterparts two decades ago. The food science curriculum in most schools in the United States has split into science and business options, with students in the science option following the Institute of Food Technologists' minimum requirements. The minimum requirements include the food engineering course, thus students en rolled in food engineering are generally better than average, and can be chal lenged with more rigor in the course material. The food industry itself has changed. Traditionally, the food industry has been primarily involved in the canning and freezing of agricultural commodi ties, and a company's operations generally remain within a single commodity. Now, the industry is becoming more diversified, with many companies involved in operations involving more than one type of commodity. A number of for mulated food products are now made where the commodity connection becomes obscure. The ability to solve problems is a valued asset in a technologist, and often, solving problems involves nothing more than applying principles learned in other areas to the problem at hand. A principle that may have been commonly used with one commodity may also be applied to another commodity to produce unique products.
Engage your students with inquiry-based lessons that help them think like scientists! "[This] book...has made such a difference in my teaching of science this school year. I have had some of the most amazing science lessons and activities with my students and I attribute this to what I learned from...[this] book... I have watched my 5th grade students go from being casual observers in science to making some amazing observations that I even missed. We enjoy our class investigations and the students ask for more!" --Alyce F. Surmann, Sembach Middle School "Teachers will relate well to the author's personal stories and specific examples given in the text, especially the ones about events in his own classroom.... like having the grasshoppers escape into the classroom!" --Andrea S. Martine, Director of Curriculum and Instruction, Warrior Run School District With Teaching the Nature of Science through Process Skills, author and science educator Randy Bell uses process skills you'll recognize, such as inference and observation, to promote an understanding of the characteristics of science knowledge. His personal stories, taken from years of teaching, set the stage for a friendly narrative that illuminates these characteristics of scientific knowledge and provides step-by-step guidance for implementing inquiry activities that help children understand such important, yet abstract, concepts. With Randy as your guide, you can better adhere to current science education standards that urge teachers to go beyond teaching science content to teach children about the practice and the nature of science in a way that engages all learners in grades three through eight. Investigate further... More than 50 ideas and activities for teaching the nature of science to help you meet content standards. A comprehensive framework to guide you in integrating the approach across the science curriculum, throughout the school year, and across the grade levels. A goldmine of reproducible resources, such as work sheets, notebook assignments, and more. Assessment guidance that helps you measure your students' nature of science understanding.
This work presents a series of dramatic discoveries never before made public. Starting from a collection of simple computer experiments---illustrated in the book by striking computer graphics---Wolfram shows how their unexpected results force a whole new way of looking at the operation of our universe. Wolfram uses his approach to tackle a remarkable array of fundamental problems in science: from the origin of the Second Law of thermodynamics, to the development of complexity in biology, the computational limitations of mathematics, the possibility of a truly fundamental theory of physics, and the interplay between free will and determinism.
This book is designed to introduce doctoral and graduate students to the process of conducting scientific research in the social sciences, business, education, public health, and related disciplines. It is a one-stop, comprehensive, and compact source for foundational concepts in behavioral research, and can serve as a stand-alone text or as a supplement to research readings in any doctoral seminar or research methods class. This book is currently used as a research text at universities on six continents and will shortly be available in nine different languages.