The Principle of Least Action

The Principle of Least Action

Author: Alberto G. Rojo

Publisher: Cambridge University Press

Published: 2018-03-29

Total Pages: 269

ISBN-13: 0521869021

DOWNLOAD EBOOK

This text brings history and the key fields of physics together to present a unique technical discussion of the principles of least action.


The Principle of Least Action in Geometry and Dynamics

The Principle of Least Action in Geometry and Dynamics

Author: Karl Friedrich Siburg

Publisher: Springer Science & Business Media

Published: 2004-05-17

Total Pages: 148

ISBN-13: 9783540219446

DOWNLOAD EBOOK

New variational methods by Aubry, Mather, and Mane, discovered in the last twenty years, gave deep insight into the dynamics of convex Lagrangian systems. This book shows how this Principle of Least Action appears in a variety of settings (billiards, length spectrum, Hofer geometry, modern symplectic geometry). Thus, topics from modern dynamical systems and modern symplectic geometry are linked in a new and sometimes surprising way. The central object is Mather’s minimal action functional. The level is for graduate students onwards, but also for researchers in any of the subjects touched in the book.


The Lazy Universe

The Lazy Universe

Author: Jennifer Coopersmith

Publisher: Oxford University Press

Published: 2017-04-28

Total Pages: 272

ISBN-13: 0191060720

DOWNLOAD EBOOK

This is a rare book on a rare topic: it is about 'action' and the Principle of Least Action. A surprisingly well-kept secret, these ideas are at the heart of physical science and engineering. Physics is well known as being concerned with grand conservatory principles (e.g. the conservation of energy) but equally important is the optimization principle (such as getting somewhere in the shortest time or with the least resistance). The book explains: why an optimization principle underlies physics, what action is, what `the Hamiltonian' is, and how new insights into energy, space, and time arise. It assumes some background in the physical sciences, at the level of undergraduate science, but it is not a textbook. The requisite derivations and worked examples are given but may be skim-read if desired. The author draws from Cornelius Lanczos's book "The Variational Principles of Mechanics" (1949 and 1970). Lanczos was a brilliant mathematician and educator, but his book was for a postgraduate audience. The present book is no mere copy with the difficult bits left out - it is original, and a popularization. It aims to explain ideas rather than achieve technical competence, and to show how Least Action leads into the whole of physics.


Feynman's Thesis

Feynman's Thesis

Author: Richard Phillips Feynman

Publisher: World Scientific

Published: 2005

Total Pages: 142

ISBN-13: 9812563660

DOWNLOAD EBOOK

Richard Feynman's never previously published doctoral thesis formed the heart of much of his brilliant and profound work in theoretical physics. Entitled ?The Principle of Least Action in Quantum Mechanics," its original motive was to quantize the classical action-at-a-distance electrodynamics. Because that theory adopted an overall space?time viewpoint, the classical Hamiltonian approach used in the conventional formulations of quantum theory could not be used, so Feynman turned to the Lagrangian function and the principle of least action as his points of departure.The result was the path integral approach, which satisfied ? and transcended ? its original motivation, and has enjoyed great success in renormalized quantum field theory, including the derivation of the ubiquitous Feynman diagrams for elementary particles. Path integrals have many other applications, including atomic, molecular, and nuclear scattering, statistical mechanics, quantum liquids and solids, Brownian motion, and noise theory. It also sheds new light on fundamental issues like the interpretation of quantum theory because of its new overall space?time viewpoint.The present volume includes Feynman's Princeton thesis, the related review article ?Space?Time Approach to Non-Relativistic Quantum Mechanics? [Reviews of Modern Physics 20 (1948), 367?387], Paul Dirac's seminal paper ?The Lagrangian in Quantum Mechanics'' [Physikalische Zeitschrift der Sowjetunion, Band 3, Heft 1 (1933)], and an introduction by Laurie M Brown.


Variational Principles in Classical Mechanics

Variational Principles in Classical Mechanics

Author: Douglas Cline

Publisher:

Published: 2017-08

Total Pages: 565

ISBN-13: 9780998837253

DOWNLOAD EBOOK

Two dramatically different philosophical approaches to classical mechanics were developed during the 17th - 18th centuries. Newton developed his vectorial formulation that uses time-dependent differential equations of motion to relate vector observables like force and rate of change of momentum. Euler, Lagrange, Hamilton, and Jacobi, developed powerful alternative variational formulations based on the assumption that nature follows the principle of least action. These powerful variational formulations have become the preeminent philosophical approach used in modern science, was well as having applications to other fields such as economics and engineering.This book introduces variational principles, and illustrates the intellectual beauty, the remarkable power, and the broad scope, of applying variational principles to classical mechanics. A brief review of Newtonian mechanics compares and contrasts the relative merits of the intuitive Newtonian vectorial formulation, with the more powerful analytical variational formulations. Applications presented cover a wide variety of topics, as well as extensions to accommodate relativistic mechanics, and quantum theory.


The Development of the Action Principle

The Development of the Action Principle

Author: Walter Dittrich

Publisher: Springer Nature

Published: 2021-05-29

Total Pages: 141

ISBN-13: 3030691055

DOWNLOAD EBOOK

This book describes the historical development of the principle of stationary action from the 17th to the 20th centuries. Reference is made to the most important contributors to this topic, in particular Bernoullis, Leibniz, Euler, Lagrange and Laplace. The leading theme is how the action principle is applied to problems in classical physics such as hydrodynamics, electrodynamics and gravity, extending also to the modern formulation of quantum mechanics and quantum field theory, especially quantum electrodynamics. A critical analysis of operator versus c-number field theory is given. The book contains many worked examples. In particular, the term "vacuum" is scrutinized.The book is aimed primarily at actively working researchers, graduate students and historians interested in the philosophical interpretation and evolution of physics; in particular, in understanding the action principle and its application to a wide range of natural phenomena.


Introduction To Lagrangian Mechanics, An (2nd Edition)

Introduction To Lagrangian Mechanics, An (2nd Edition)

Author: Alain J Brizard

Publisher: World Scientific Publishing Company

Published: 2014-11-28

Total Pages: 324

ISBN-13: 9814623644

DOWNLOAD EBOOK

An Introduction to Lagrangian Mechanics begins with a proper historical perspective on the Lagrangian method by presenting Fermat's Principle of Least Time (as an introduction to the Calculus of Variations) as well as the principles of Maupertuis, Jacobi, and d'Alembert that preceded Hamilton's formulation of the Principle of Least Action, from which the Euler-Lagrange equations of motion are derived. Other additional topics not traditionally presented in undergraduate textbooks include the treatment of constraint forces in Lagrangian Mechanics; Routh's procedure for Lagrangian systems with symmetries; the art of numerical analysis for physical systems; variational formulations for several continuous Lagrangian systems; an introduction to elliptic functions with applications in Classical Mechanics; and Noncanonical Hamiltonian Mechanics and perturbation theory.The Second Edition includes a larger selection of examples and problems (with hints) in each chapter and continues the strong emphasis of the First Edition on the development and application of mathematical methods (mostly calculus) to the solution of problems in Classical Mechanics.New material has been added to most chapters. For example, a new derivation of the Noether theorem for discrete Lagrangian systems is given and a modified Rutherford scattering problem is solved exactly to show that the total scattering cross section associated with a confined potential (i.e., which vanishes beyond a certain radius) yields the hard-sphere result. The Frenet-Serret formulas for the Coriolis-corrected projectile motion are presented, where the Frenet-Serret torsion is shown to be directly related to the Coriolis deflection, and a new treatment of the sleeping-top problem is given.