Environmental Physiology and Biochemistry of Insects

Environmental Physiology and Biochemistry of Insects

Author: K. H. Hoffmann

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 304

ISBN-13: 3642700209

DOWNLOAD EBOOK

Of all the zoological classes the insects are the most numerous in species and the most varied in structure. Estimates of the number 18 of species vary from 1 to 10 million, and 10 individuals are es timated to be alive at any given moment. In their evolution, in sects are relatively ancient and, therefore, they have proved to be a phenomenally successful biological design which has survived unchanged in its basic winged form during the last 300 m. y. In sects were the first small animals to colonize the land with full suc cess. Their small size opened many more ecological niches to them and permitted a greater diversification than the vertebrates. What is it about this design that has made insects so successful in habitats stretching from arid deserts to the Arctic and Antarctic and from freshwater brooks to hot springs and salines? Is it due to the adapta bility of their behavior, physiology, and biochemistry to changing environmental conditions? Three features of insects are of particular importance in determin ing their physiological relationship with the environment: their small size, as mentioned above, the impermeability and rigidity of their exoskeleton, and their poikilothermy. Of course, as with any other animals, the insects' success in its environment depends on its ability to maintain its internal state within certain tolerable limits of temperature, osmotic pressure, pH or oxygen concentra tion (homoeostasis).


Energy Metabolism in Insects

Energy Metabolism in Insects

Author: Roger G. H. Downer

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 251

ISBN-13: 1461592216

DOWNLOAD EBOOK

The scientific program for the XVI International Congress of Entomology, held in Kyoto, Japan August 3-9, 1980 included a symposium on the subject of "Energy Metabolism and Its Regulation in Insects." The symposium provided an opportunity to integrate knowledge, and focus attention, on an important and fundamental aspect of insect biochemis try/physiology. The energy metabolism of insects differs from that of other animals in a variety of ways, including the prodigious amounts of energy expended by flying insects, the presence in hemolymph of large concentrations of sugar in the form of the nonreducing disaccharide tre halose, the transport of fat in the form of diacylglycerol, and the periodic mobilization and deposition of cuticular components during development. These differences, together with hormones, neurohormones, and neu rotransmitters that are specific to (or functionally different in) insects, serve to demonstrate the unique nature of energy metabolism in insects. An obvious corollary from the demonstrated uniqueness of insect energy metabolism is that an understanding of the process may lead to the de velopment of new, specific agents or strategies for the suppression of insect pests. The present volume is an expanded version of the Kyoto symposium.


Insect Endocrinology

Insect Endocrinology

Author: Lawrence I. Gilbert

Publisher: Academic Press

Published: 2011-07-26

Total Pages: 589

ISBN-13: 0123848512

DOWNLOAD EBOOK

The publication of the extensive seven-volume work Comprehensive Molecular Insect Science provided a complete reference encompassing important developments and achievements in modern insect science. One of the most swiftly moving areas in entomological and comparative research is endocrinology, and this volume, Insect Endocrinology, is designed for those who desire a comprehensive yet concise work on important aspects of this topic. Because this area has moved quickly since the original publication, articles in this new volume are revised, highlighting developments in the related area since its original publication. Insect Endocrinology covers the mechanism of action of insect hormones during growth and metamorphosis as well as the role of insect hormones in reproduction, diapause and the regulation of metabolism. Contents include articles on the juvenile hormones, circadian organization of the endocrine system, ecdysteroid chemistry and biochemistry, as well as new chapters on insulin-like peptides and the peptide hormone Bursicon. This volume will be of great value to senior investigators, graduate students, post-doctoral fellows and advanced undergraduate research students. It can also be used as a reference for graduate courses and seminars on the topic. Chapters will also be valuable to the applied biologist or entomologist, providing the requisite understanding necessary for probing the more applied research areas. - Articles selected by the known and respected editor-in-chief of the original major reference work, Comprehensive Molecular Insect Science - Newly revised contributions bring together the latest research in the quickly moving field of insect endocrinology - Review of the literature of the past five years is now included, as well as full use of data arising from the application of molecular technologies wherever appropriate


Insects at Low Temperature

Insects at Low Temperature

Author: Richard Lee

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 516

ISBN-13: 147570190X

DOWNLOAD EBOOK

The study of insects at low temperature is a comparatively new field. Only recently has insect cryobiology begun to mature, as research moves from a descriptive approach to a search for underlying mechanisms at diverse levels of organization ranging from the gene and cell to ecological and evolutionary relationships. Knowledge of insect responses to low temperature is crucial for understanding the biology of insects living in seasonally varying habitats as well as in polar regions. It is not possible to precisely define low temperature. In the tropics exposure to 10-15°C may induce chill coma or death, whereas some insects in temperate and polar regions remain active and indeed even able to fly at O°C or below. In contrast, for persons interested in cryopreservation, low temperature may mean storage in liquid nitrogen at - 196°C. In the last decade, interest in adaptations of invertebrates to low temperature has risen steadily. In part, this book had its origins in a symposium on this subject that was held at the annual meeting of the Entomological Society of America in Louisville, Kentucky, USA in December, 1988. However, the emergence and growth of this area has also been strongly influenced by an informal group of investigators who met in a series of symposia held in Oslo, Norway in 1982, in Victoria, British Columbia, Canada in 1985 and in Cambridge, England in 1988. Another is scheduled for Binghamton, New York, USA (1990).


Insect Diapause

Insect Diapause

Author: David L. Denlinger

Publisher: Cambridge University Press

Published: 2022-02-03

Total Pages: 465

ISBN-13: 1108755186

DOWNLOAD EBOOK

Our highly seasonal world restricts insect activity to brief portions of the year. This feature necessitates a sophisticated interpretation of seasonal changes and enactment of mechanisms for bringing development to a halt and then reinitiating it when the inimical season is past. The dormant state of diapause serves to bridge the unfavourable seasons, and its timing provides a powerful mechanism for synchronizing insect development. This book explores how seasonal signals are monitored and used by insects to enact specific molecular pathways that generate the diapause phenotype. The broad perspective offered here scales from the ecological to the molecular and thus provides a comprehensive view of this exciting and vibrant research field, offering insights on topics ranging from pest management, evolution, speciation, climate change and disease transmission, to human health, as well as analogies with other forms of invertebrate dormancy and mammalian hibernation.


Insect Biology in The Future

Insect Biology in The Future

Author: Michael Locke

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 995

ISBN-13: 0323141854

DOWNLOAD EBOOK

Insect Biology in the Future: ""VBW 80"" contains essays presented to Sir Vincent Wigglesworth during his 80th year. Wigglesworth is fairly designated as the founding father and remarkable leader of insect physiology. His papers and other works significantly contribute to this field of study. This book, dedicated to him, underlines the value of insect material in approaching a wide spectrum of biological issues. The essays in this book tackle the insects' physiology, including their evolution and dominance. The papers also discuss the various avenues of water loss and gain as interrelated components of overall water balance in land arthropods. This reference suggests possible areas for further research mainly at the whole animal level. It also describes the fat body, hemolymph, endocrine control of vitellogenin synthesis, reproduction, growth, hormones, chemistry, defense, and survival of insects. Other topics of importance include cell communication and pattern formation in insects; plant-insect interaction; and insecticides.


Osmotic and Ionic Regulation

Osmotic and Ionic Regulation

Author: David H. Evans

Publisher: CRC Press

Published: 2008-11-18

Total Pages: 615

ISBN-13: 0849380529

DOWNLOAD EBOOK

In the 40 years since the classic review of osmotic and ionic regulation written by Potts and Parry, there has been astonishing growth in scientific productivity, a marked shift in the direction and taxonomic distribution of research, and amazing changes in the technology of scientific research" It is indicative of the growth of the subject that as


Low Temperature Biology of Insects

Low Temperature Biology of Insects

Author: David L. Denlinger

Publisher: Cambridge University Press

Published: 2010-01-28

Total Pages:

ISBN-13: 1139485474

DOWNLOAD EBOOK

Low temperature is a major environmental constraint impacting the geographic distribution and seasonal activity patterns of insects. Written for academic researchers in environmental physiology and entomology, this book explores the physiological and molecular mechanisms that enable insects to cope with a cold environment and places these findings into an evolutionary and ecological context. An introductory chapter provides a primer on insect cold tolerance and subsequent chapters in the first section discuss the organismal, cellular and molecular responses that allow insects to survive in the cold despite their, at best, limited ability to regulate their own body temperature. The second section, highlighting the evolutionary and macrophysiological responses to low temperature, is especially relevant for understanding the impact of global climate change on insect systems. A final section translates the knowledge gained from the rest of the book into practical applications including cryopreservation and the augmentation of pest management strategies.