The Physics of Conformal Radiotherapy

The Physics of Conformal Radiotherapy

Author: S. Webb

Publisher: CRC Press

Published: 1997-01-01

Total Pages: 408

ISBN-13: 9781420050806

DOWNLOAD EBOOK

The Physics of Conformal Radiotherapy: Advances in Technology provides a thorough overview of conformal radiotherapy and biological modeling, focusing on the underlying physics and methodology of three-dimensional techniques in radiation therapy. This carefully written, authoritative account evaluates three-dimensional treatment planning, optimization, photon multileaf collimation, proton therapy, transit dosimetry, intensity-modulation techniques, and biological modeling. It is an invaluable teaching guide and reference for all medical physicists and radiation oncologists/therapists that use conformal radiotherapy.


The Physics of Three Dimensional Radiation Therapy

The Physics of Three Dimensional Radiation Therapy

Author: S. Webb

Publisher: CRC Press

Published: 1993-01-01

Total Pages: 400

ISBN-13: 9781420050363

DOWNLOAD EBOOK

The Physics of Three Dimensional Radiation Therapy presents a broad study of the use of three-dimensional techniques in radiation therapy. These techniques are used to specify the target volume precisely and deliver radiation with precision to minimize damage to surrounding healthy tissue. The book discusses multimodality computed tomography, complex treatment planning software, advanced collimation techniques, proton radiotherapy, megavoltage imaging, and stereotactic radiosurgery. A review of the literature, numerous questions, and many illustrations make this book suitable for teaching a course. The themes covered in this book are developed and expanded in Webb's The Physics of Conformal Radiotherapy and the two may be used together or in successive semesters for teaching purposes.


Khan's The Physics of Radiation Therapy

Khan's The Physics of Radiation Therapy

Author: Faiz M. Khan

Publisher: Lippincott Williams & Wilkins

Published: 2014-04-03

Total Pages: 584

ISBN-13: 1469881268

DOWNLOAD EBOOK

Expand your understanding of the physics and practical clinical applications of advanced radiation therapy technologies with Khan's The Physics of Radiation Therapy, 5th edition, the book that set the standard in the field. This classic full-color text helps the entire radiation therapy team—radiation oncologists, medical physicists, dosimetrists, and radiation therapists—develop a thorough understanding of 3D conformal radiotherapy (3D-CRT), stereotactic radiosurgery (SRS), high dose-rate remote afterloaders (HDR), intensity modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT), Volumetric Modulated Arc Therapy (VMAT), and proton beam therapy, as well as the physical concepts underlying treatment planning, treatment delivery, and dosimetry. In preparing this new Fifth Edition, Dr. Kahn and new co-author Dr. John Gibbons made chapter-by-chapter revisions in the light of the latest developments in the field, adding new discussions, a new chapter, and new color illustrations throughout. Now even more precise and relevant, this edition is ideal as a reference book for practitioners, a textbook for students, and a constant companion for those preparing for their board exams. Features Stay on top of the latest advances in the field with new sections and/or discussions of Image Guided Radiation Therapy (IGRT), Volumetric Modulated Arc Therapy (VMAT), and the Failure Mode Event Analysis (FMEA) approach to quality assurance. Deepen your knowledge of Stereotactic Body Radiotherapy (SBRT) through a completely new chapter that covers SBRT in greater detail. Expand your visual understanding with new full color illustrations that reflect current practice and depict new procedures. Access the authoritative information you need fast through the new companion website which features fully searchable text and an image bank for greater convenience in studying and teaching. This is the tablet version which does not include access to the supplemental content mentioned in the text.


Biomedical Physics in Radiotherapy for Cancer

Biomedical Physics in Radiotherapy for Cancer

Author: Barry Allen

Publisher: CSIRO PUBLISHING

Published: 2012-02-21

Total Pages: 449

ISBN-13: 0643103317

DOWNLOAD EBOOK

The scientific and clinical foundations of Radiation Therapy are cross-disciplinary. This book endeavours to bring together the physics, the radiobiology, the main clinical aspects as well as available clinical evidence behind Radiation Therapy, presenting mutual relationships between these disciplines and their role in the advancements of radiation oncology.


Intensity-Modulated Radiation Therapy

Intensity-Modulated Radiation Therapy

Author: S. Webb

Publisher: CRC Press

Published: 2015-05-06

Total Pages: 441

ISBN-13: 1420034111

DOWNLOAD EBOOK

Clinical conformal radiotherapy is the holy grail of radiation treatment and is now becoming a reality through the combined efforts of physical scientists and engineers, who have improved the physical basis of radiotherapy, and the interest and concern of imaginative radiotherapists and radiographers. Intensity-Modulated Radiation Therapy de


Operations Research and Health Care

Operations Research and Health Care

Author: Margaret L. Brandeau

Publisher: Springer Science & Business Media

Published: 2006-04-04

Total Pages: 870

ISBN-13: 1402080662

DOWNLOAD EBOOK

In both rich and poor nations, public resources for health care are inadequate to meet demand. Policy makers and health care providers must determine how to provide the most effective health care to citizens using the limited resources that are available. This chapter describes current and future challenges in the delivery of health care, and outlines the role that operations research (OR) models can play in helping to solve those problems. The chapter concludes with an overview of this book – its intended audience, the areas covered, and a description of the subsequent chapters. KEY WORDS Health care delivery, Health care planning HEALTH CARE DELIVERY: PROBLEMS AND CHALLENGES 3 1.1 WORLDWIDE HEALTH: THE PAST 50 YEARS Human health has improved significantly in the last 50 years. In 1950, global life expectancy was 46 years [1]. That figure rose to 61 years by 1980 and to 67 years by 1998 [2]. Much of these gains occurred in low- and middle-income countries, and were due in large part to improved nutrition and sanitation, medical innovations, and improvements in public health infrastructure.


Radiotherapy and Brachytherapy

Radiotherapy and Brachytherapy

Author: Yves Lemoigne

Publisher: Springer Science & Business Media

Published: 2009-09-11

Total Pages: 256

ISBN-13: 9048130956

DOWNLOAD EBOOK

This book reports the majority of lectures given during the NATO Advanced Study Institute ASI-982996, which was held at the European Scientific Institute of Archamps (ESI, Archamps – France) from November 15 to November 27, 2007. The ASI course was structured in two parts: the first was dedicated to what is often called “teletherapy”, i. e. radiotherapy with external beams, while the second focused on internal radiotherapy, also called “brachytherapy” or “curietherapy” in honour of Madame Curie who initiated the technique about a century ago. This ASI took place after the European School of Medical Physics, which devoted a 3 week period to medical imaging, a subject complementary to the topics of this book. Courses devoted to nuclear medicine and digital imaging techniques are collected in two volumes of the NATO Science Series entitled “Physics for Medical Imaging Applications” (ISBN 978-1-4020-5650-5) and “Molecular imaging: computer reconstruction and practice” (ISBN 978-1-4020- 8751-6). Every year in autumn ESI organises the European School of Medical Physics, which covers a large spectrum of topics ranging from Medical Imaging to Radiotherapy, over a period of 5 weeks. Thanks to the Cooperative Science and Technology sub-programme of the NATO Science Division, weeks four and five were replaced this year by the ASI course dedicated to “Physics of Modern Radiotherapy & Brachytherapy”. This allowed the participation of experts and students from 20 different countries, with diverse cultural background and p- fessional experience.


The Physics of Radiation Therapy

The Physics of Radiation Therapy

Author: Faiz M. Khan

Publisher: Lippincott Williams & Wilkins

Published: 2012-03-28

Total Pages: 576

ISBN-13: 1451149131

DOWNLOAD EBOOK

Dr. Khan's classic textbook on radiation oncology physics is now in its thoroughly revised and updated Fourth Edition. It provides the entire radiation therapy team—radiation oncologists, medical physicists, dosimetrists, and radiation therapists—with a thorough understanding of the physics and practical clinical applications of advanced radiation therapy technologies, including 3D-CRT, stereotactic radiotherapy, HDR, IMRT, IGRT, and proton beam therapy. These technologies are discussed along with the physical concepts underlying treatment planning, treatment delivery, and dosimetry. This Fourth Edition includes brand-new chapters on image-guided radiation therapy (IGRT) and proton beam therapy. Other chapters have been revised to incorporate the most recent developments in the field. This edition also features more than 100 full-color illustrations throughout. A companion Website will offer the fully searchable text and an image bank.


Proton Therapy Physics

Proton Therapy Physics

Author: Harald Paganetti

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 691

ISBN-13: 1439836450

DOWNLOAD EBOOK

Proton Therapy Physics goes beyond current books on proton therapy to provide an in-depth overview of the physics aspects of this radiation therapy modality, eliminating the need to dig through information scattered in the medical physics literature. After tracing the history of proton therapy, the book summarizes the atomic and nuclear physics background necessary for understanding proton interactions with tissue. It describes the physics of proton accelerators, the parameters of clinical proton beams, and the mechanisms to generate a conformal dose distribution in a patient. The text then covers detector systems and measuring techniques for reference dosimetry, outlines basic quality assurance and commissioning guidelines, and gives examples of Monte Carlo simulations in proton therapy. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. It also examines computerized treatment plan optimization, methods for in vivo dose or beam range verification, the safety of patients and operating personnel, and the biological implications of using protons from a physics perspective. The final chapter illustrates the use of risk models for common tissue complications in treatment optimization. Along with exploring quality assurance issues and biological considerations, this practical guide collects the latest clinical studies on the use of protons in treatment planning and radiation monitoring. Suitable for both newcomers in medical physics and more seasoned specialists in radiation oncology, the book helps readers understand the uncertainties and limitations of precisely shaped dose distribution.