Linus Pauling wrote a stellar series of over 800 scientific papers spanning an amazing range of fields, some of which he himself initiated. This book is a selection of the most important of his writings in the fields of quantum mechanics, chemical bonding (covalent, ionic, metallic, and hydrogen bonding), molecular rotation and entropy, protein structure, hemoglobin, molecular disease, molecular evolution, the antibody mechanism, the molecular basis of anesthesia, orthomolecular medicine, radiation chemistry/biology, and nuclear structure. Through these papers the reader gets a fresh, unfiltered view of the genius of Pauling's many contributions to chemistry, chemical physics, molecular biology, and molecular medicine. Contents.: The Chemical Bond: Metallic Bonding; Hydrogen Bonding; Crystal and Molecular Structure and Properties: Ionic Crystals and X-Ray Difraction; Molecules in the Gas Phase and Electron Diffraction; Entropy and Molecular Rotation in Crystals and Liquids; and other papers. Readership: Chemists, biochemists, molecular biologists and physicists.
The classic case for why government must support science—with a new essay by physicist and former congressman Rush Holt on what democracy needs from science today Science, the Endless Frontier is recognized as the landmark argument for the essential role of science in society and government’s responsibility to support scientific endeavors. First issued when Vannevar Bush was the director of the US Office of Scientific Research and Development during the Second World War, this classic remains vital in making the case that scientific progress is necessary to a nation’s health, security, and prosperity. Bush’s vision set the course for US science policy for more than half a century, building the world’s most productive scientific enterprise. Today, amid a changing funding landscape and challenges to science’s very credibility, Science, the Endless Frontier resonates as a powerful reminder that scientific progress and public well-being alike depend on the successful symbiosis between science and government. This timely new edition presents this iconic text alongside a new companion essay from scientist and former congressman Rush Holt, who offers a brief introduction and consideration of what society needs most from science now. Reflecting on the report’s legacy and relevance along with its limitations, Holt contends that the public’s ability to cope with today’s issues—such as public health, the changing climate and environment, and challenging technologies in modern society—requires a more capacious understanding of what science can contribute. Holt considers how scientists should think of their obligation to society and what the public should demand from science, and he calls for a renewed understanding of science’s value for democracy and society at large. A touchstone for concerned citizens, scientists, and policymakers, Science, the Endless Frontier endures as a passionate articulation of the power and potential of science.
Academic Writing and Publishing will show academics (mainly in the social sciences) how to write and publish research articles. Its aim is to supply examples and brief discussions of recent work in all aspects of the area in short, sharp chapters. It should serve as a handbook for postgraduates and lecturers new to publishing. The book is written in a readable and lively personal style. The advice given is direct and based on up-to-date research that goes beyond that given in current textbooks. For example, the chapter on titles lists different kinds of titles and their purposes not discussed in other texts. The chapter on abstracts instructs the reader on writing structured abstracts from the start.
The big stories -- The skills of the new machines : technology races ahead -- Moore's law and the second half of the chessboard -- The digitization of just about everything -- Innovation : declining or recombining? -- Artificial and human intelligence in the second machine age -- Computing bounty -- Beyond GDP -- The spread -- The biggest winners : stars and superstars -- Implications of the bounty and the spread -- Learning to race with machines : recommendations for individuals -- Policy recommendations -- Long-term recommendations -- Technology and the future (which is very different from "technology is the future").
This is a book about readers on the move in the age of Victorian empire. It examines the libraries and reading habits of five reading constituencies from the long nineteenth century: shipboard emigrants, Australian convicts, Scottish settlers, polar explorers, and troops in the First World War. What was the role of reading in extreme circumstances? How were new meanings made under strange skies? How was reading connected with mobile communities in an age of expansion? Uncovering a vast range of sources from the period, from diaries, periodicals, and literary culture, Bill Bell reveals some remarkable and unanticipated insights into the way that reading operated within and upon the British Empire for over a century.
Learning to Think Spatially examines how spatial thinking might be incorporated into existing standards-based instruction across the school curriculum. Spatial thinking must be recognized as a fundamental part of Kâ€"12 education and as an integrator and a facilitator for problem solving across the curriculum. With advances in computing technologies and the increasing availability of geospatial data, spatial thinking will play a significant role in the information-based economy of the twenty-first century. Using appropriately designed support systems tailored to the Kâ€"12 context, spatial thinking can be taught formally to all students. A geographic information system (GIS) offers one example of a high-technology support system that can enable students and teachers to practice and apply spatial thinking in many areas of the curriculum.
This Open Access biography chronicles the life and achievements of the Norwegian engineer and physicist Rolf Widerøe. Readers who meet him in the pages of this book will wonder why he isn't better known. The first of Widerøe's many pioneering contributions in the field of accelerator physics was the betatron, the second, the linear accelerator, both summarized in a 27 page PhD. The betatron revolutionized the fields of cancer treatment through radiation therapy and also nondestructive testing; hospitals worldwide installed Widerøe's machine and today’s modern radiation treatment equipment is based on his inventions. The most recent renaissance of the linac provides unprecedented x-ray intensities at Free Electron Laser (FEL) facilities in operation and construction worldwide. . Widerøe’s story also includes a fair share of drama, particularly during World War II when both Germans and the Allies vied for his collaboration. Widerøe held leading positions in multinational industry groups and was one of the consultants for building the world's largest nuclear laboratory, CERN, in Switzerland. He gained over 200 patents, received several honorary doctorates and a number of international awards. The author, a professional writer and maker of TV documentaries, has gained access to hitherto restricted archives in several countries, which provided a wealth of new material and insights, in particular in relation to the war years. She tells here a gripping and illuminating story.
Such diverse thinkers as Lao-Tze, Confucius, and U.S. Defense Secretary Donald Rumsfeld have all pointed out that we need to be able to tell the difference between real and assumed knowledge. The systematic review is a scientific tool that can help with this difficult task. It can help, for example, with appraising, summarising, and communicating the results and implications of otherwise unmanageable quantities of data. This book, written by two highly-respected social scientists, provides an overview of systematic literature review methods: Outlining the rationale and methods of systematic reviews; Giving worked examples from social science and other fields; Applying the practice to all social science disciplines; It requires no previous knowledge, but takes the reader through the process stage by stage; Drawing on examples from such diverse fields as psychology, criminology, education, transport, social welfare, public health, and housing and urban policy, among others. Including detailed sections on assessing the quality of both quantitative, and qualitative research; searching for evidence in the social sciences; meta-analytic and other methods of evidence synthesis; publication bias; heterogeneity; and approaches to dissemination.