The Number Concept, True its Definition and The Division by Zero

The Number Concept, True its Definition and The Division by Zero

Author: Ernesto Bayona

Publisher: Page Publishing Inc

Published: 2022-11-11

Total Pages: 26

ISBN-13: 1662491093

DOWNLOAD EBOOK

This project is based on developing a true calculation method that correctly defines the axioms that establish the concept of number, solving the division by zero, and the mathematical definitions that allow its implementation.


Introduction to the Division by Zero Calculus

Introduction to the Division by Zero Calculus

Author: SABUROU SAITOH

Publisher: Scientific Research Publishing, Inc. USA

Published: 2021-02-04

Total Pages: 203

ISBN-13: 1649970897

DOWNLOAD EBOOK

The common sense on the division by zero with the long and mysterious history is wrong and our basic idea on the space around the point at infinity is also wrong since Euclid. On the gradient or on differential coefficients we have a great missing since tan(π/2) = 0. Our mathematics is also wrong in elementary mathematics on the division by zero. In this book in a new and definite sense, we will show and give various applications of the division by zero 0/0 = 1/0 = z/0 = 0. In particular, we will introduce several fundamental concepts in calculus, Euclidean geometry, analytic geometry, complex analysis and differential equations. We will see new properties on the Laurent expansion, singularity, derivative, extension of solutions of differential equations beyond analytical and isolated singularities, and reduction problems of differential equations. On Euclidean geometry and analytic geometry, we will find new fields by the concept of the division by zero. We will collect many concrete properties in mathematical sciences from the viewpoint of the division by zero. We will know that the division by zero is our elementary and fundamental mathematics.


Introduction to Logic

Introduction to Logic

Author: Patrick Suppes

Publisher: Courier Corporation

Published: 2012-07-12

Total Pages: 340

ISBN-13: 0486138054

DOWNLOAD EBOOK

Part I of this coherent, well-organized text deals with formal principles of inference and definition. Part II explores elementary intuitive set theory, with separate chapters on sets, relations, and functions. Ideal for undergraduates.


Complex Function Theory

Complex Function Theory

Author: Donald Sarason

Publisher: American Mathematical Society

Published: 2021-02-16

Total Pages: 177

ISBN-13: 1470463237

DOWNLOAD EBOOK

Complex Function Theory is a concise and rigorous introduction to the theory of functions of a complex variable. Written in a classical style, it is in the spirit of the books by Ahlfors and by Saks and Zygmund. Being designed for a one-semester course, it is much shorter than many of the standard texts. Sarason covers the basic material through Cauchy's theorem and applications, plus the Riemann mapping theorem. It is suitable for either an introductory graduate course or an undergraduate course for students with adequate preparation. The first edition was published with the title Notes on Complex Function Theory.


Meaning in Mathematics Education

Meaning in Mathematics Education

Author: Jeremy Kilpatrick

Publisher: Springer Science & Business Media

Published: 2006-03-30

Total Pages: 267

ISBN-13: 0387240403

DOWNLOAD EBOOK

What does it mean to know mathematics? How does meaning in mathematics education connect to common sense or to the meaning of mathematics itself? How are meanings constructed and communicated and what are the dilemmas related to these processes? There are many answers to these questions, some of which might appear to be contradictory. Thus understanding the complexity of meaning in mathematics education is a matter of huge importance. There are twin directions in which discussions have developed—theoretical and practical—and this book seeks to move the debate forward along both dimensions while seeking to relate them where appropriate. A discussion of meaning can start from a theoretical examination of mathematics and how mathematicians over time have made sense of their work. However, from a more practical perspective, anybody involved in teaching mathematics is faced with the need to orchestrate the myriad of meanings derived from multiple sources that students develop of mathematical knowledge. This book presents a wide variety of theoretical reflections and research results about meaning in mathematics and mathematics education based on long-term and collective reflection by the group of authors as a whole. It is the outcome of the work of the BACOMET (BAsic COmponents of Mathematics Education for Teachers) group who spent several years deliberating on this topic. The ten chapters in this book, both separately and together, provide a substantial contribution to clarifying the complex issue of meaning in mathematics education. This book is of interest to researchers in mathematics education, graduate students of mathematics education, under graduate students in mathematics, secondary mathematics teachers and primary teachers with an interest in mathematics.


Number, Shape, & Symmetry

Number, Shape, & Symmetry

Author: Diane L. Herrmann

Publisher: CRC Press

Published: 2012-10-18

Total Pages: 446

ISBN-13: 1466554649

DOWNLOAD EBOOK

Through a careful treatment of number theory and geometry, Number, Shape, & Symmetry: An Introduction to Number Theory, Geometry, and Group Theory helps readers understand serious mathematical ideas and proofs. Classroom-tested, the book draws on the authors’ successful work with undergraduate students at the University of Chicago, seventh to tenth grade mathematically talented students in the University of Chicago’s Young Scholars Program, and elementary public school teachers in the Seminars for Endorsement in Science and Mathematics Education (SESAME). The first half of the book focuses on number theory, beginning with the rules of arithmetic (axioms for the integers). The authors then present all the basic ideas and applications of divisibility, primes, and modular arithmetic. They also introduce the abstract notion of a group and include numerous examples. The final topics on number theory consist of rational numbers, real numbers, and ideas about infinity. Moving on to geometry, the text covers polygons and polyhedra, including the construction of regular polygons and regular polyhedra. It studies tessellation by looking at patterns in the plane, especially those made by regular polygons or sets of regular polygons. The text also determines the symmetry groups of these figures and patterns, demonstrating how groups arise in both geometry and number theory. The book is suitable for pre-service or in-service training for elementary school teachers, general education mathematics or math for liberal arts undergraduate-level courses, and enrichment activities for high school students or math clubs.


The Nothing that is

The Nothing that is

Author:

Publisher: Oxford University Press, USA

Published: 2000

Total Pages: 238

ISBN-13: 0195128427

DOWNLOAD EBOOK

In the tradition of "Longitude, " a small and engagingly written book on the history and meaning of zero--a "tour de force" of science history that takes us through the hollow circle that leads to infinity. 32 illustrations.


Introduction to Applied Linear Algebra

Introduction to Applied Linear Algebra

Author: Stephen Boyd

Publisher: Cambridge University Press

Published: 2018-06-07

Total Pages: 477

ISBN-13: 1316518965

DOWNLOAD EBOOK

A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.


An Introduction to Measure Theory

An Introduction to Measure Theory

Author: Terence Tao

Publisher: American Mathematical Soc.

Published: 2021-09-03

Total Pages: 206

ISBN-13: 1470466406

DOWNLOAD EBOOK

This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.