The Noether Theorems

The Noether Theorems

Author: Yvette Kosmann-Schwarzbach

Publisher: Springer Science & Business Media

Published: 2010-11-17

Total Pages: 211

ISBN-13: 0387878688

DOWNLOAD EBOOK

In 1915 and 1916 Emmy Noether was asked by Felix Klein and David Hilbert to assist them in understanding issues involved in any attempt to formulate a general theory of relativity, in particular the new ideas of Einstein. She was consulted particularly over the difficult issue of the form a law of conservation of energy could take in the new theory, and she succeeded brilliantly, finding two deep theorems. But between 1916 and 1950, the theorem was poorly understood and Noether's name disappeared almost entirely. People like Klein and Einstein did little more then mention her name in the various popular or historical accounts they wrote. Worse, earlier attempts which had been eclipsed by Noether's achievements were remembered, and sometimes figure in quick historical accounts of the time. This book carries a translation of Noether's original paper into English, and then describes the strange history of its reception and the responses to her work. Ultimately the theorems became decisive in a shift from basing fundamental physics on conservations laws to basing it on symmetries, or at the very least, in thoroughly explaining the connection between these two families of ideas. The real significance of this book is that it shows very clearly how long it took before mathematicians and physicists began to recognize the seminal importance of Noether's results. This book is thoroughly researched and provides careful documentation of the textbook literature. Kosmann-Schwarzbach has thus thrown considerable light on this slow dance in which the mathematical tools necessary to study symmetry properties and conservation laws were apparently provided long before the orchestra arrives and the party begins.


Emmy Noether's Wonderful Theorem

Emmy Noether's Wonderful Theorem

Author: Dwight E. Neuenschwander

Publisher: JHU Press

Published: 2017-04-01

Total Pages: 338

ISBN-13: 1421422689

DOWNLOAD EBOOK

One of the most important—and beautiful—mathematical solutions ever devised, Noether’s theorem touches on every aspect of physics. "In the judgment of the most competent living mathematicians, Fräulein Noether was the most significant creative mathematical genius thus far produced since the higher education of women began."—Albert Einstein The year was 1915, and the young mathematician Emmy Noether had just settled into Göttingen University when Albert Einstein visited to lecture on his nearly finished general theory of relativity. Two leading mathematicians of the day, David Hilbert and Felix Klein, dug into the new theory with gusto, but had difficulty reconciling it with what was known about the conservation of energy. Knowing of her expertise in invariance theory, they requested Noether’s help. To solve the problem, she developed a novel theorem, applicable across all of physics, which relates conservation laws to continuous symmetries—one of the most important pieces of mathematical reasoning ever developed. Noether’s “first” and “second” theorem was published in 1918. The first theorem relates symmetries under global spacetime transformations to the conservation of energy and momentum, and symmetry under global gauge transformations to charge conservation. In continuum mechanics and field theories, these conservation laws are expressed as equations of continuity. The second theorem, an extension of the first, allows transformations with local gauge invariance, and the equations of continuity acquire the covariant derivative characteristic of coupled matter-field systems. General relativity, it turns out, exhibits local gauge invariance. Noether’s theorem also laid the foundation for later generations to apply local gauge invariance to theories of elementary particle interactions. In Dwight E. Neuenschwander’s new edition of Emmy Noether’s Wonderful Theorem, readers will encounter an updated explanation of Noether’s “first” theorem. The discussion of local gauge invariance has been expanded into a detailed presentation of the motivation, proof, and applications of the “second” theorem, including Noether’s resolution of concerns about general relativity. Other refinements in the new edition include an enlarged biography of Emmy Noether’s life and work, parallels drawn between the present approach and Noether’s original 1918 paper, and a summary of the logic behind Noether’s theorem.


Noether's Theorems

Noether's Theorems

Author: Gennadi Sardanashvily

Publisher: Springer

Published: 2016-03-18

Total Pages: 304

ISBN-13: 9462391718

DOWNLOAD EBOOK

The book provides a detailed exposition of the calculus of variations on fibre bundles and graded manifolds. It presents applications in such area's as non-relativistic mechanics, gauge theory, gravitation theory and topological field theory with emphasis on energy and energy-momentum conservation laws. Within this general context the first and second Noether theorems are treated in the very general setting of reducible degenerate graded Lagrangian theory.


The Philosophy and Physics of Noether's Theorems

The Philosophy and Physics of Noether's Theorems

Author: James Read

Publisher: Cambridge University Press

Published: 2022-08-31

Total Pages: 388

ISBN-13: 1108786812

DOWNLOAD EBOOK

In 1918, Emmy Noether, in her paper Invariante Variationsprobleme, proved two theorems (and their converses) on variational problems that went on to revolutionise theoretical physics. 100 years later, the mathematics of Noether's theorems continues to be generalised, and the physical applications of her results continue to diversify. This centenary volume brings together world-leading historians, philosophers, physicists, and mathematicians in order to clarify the historical context of this work, its foundational and philosophical consequences, and its myriad physical applications. Suitable for advanced undergraduate and graduate students and professional researchers, this is a go-to resource for those wishing to understand Noether's work on variational problems and the profound applications which it finds in contemporary physics.


Noether's Theorem and Symmetry

Noether's Theorem and Symmetry

Author: P.G.L. Leach

Publisher: MDPI

Published: 2020-03-05

Total Pages: 186

ISBN-13: 3039282344

DOWNLOAD EBOOK

In Noether's original presentation of her celebrated theorem of 1918, allowances were made for the dependence of the coefficient functions of the differential operator which generated the infinitesimal transformation of the Action Integral upon the derivatives of the dependent variable(s), the so-called generalized, or dynamical, symmetries. A similar allowance is to be found in the variables of the boundary function, often termed a gauge function by those who have not read the original paper. This generality was lost after texts such as those of Courant and Hilbert or Lovelock and Rund confined attention to only point transformations. In recent decades, this diminution of the power of Noether's Theorem has been partly countered, in particular, in the review of Sarlet and Cantrijn. In this Special Issue, we emphasize the generality of Noether's Theorem in its original form and explore the applicability of even more general coefficient functions by allowing for nonlocal terms. We also look at the application of these more general symmetries to problems in which parameters or parametric functions have a more general dependence upon the independent variables.


Groups and Symmetries

Groups and Symmetries

Author: Yvette Kosmann-Schwarzbach

Publisher: Springer Science & Business Media

Published: 2009-10-16

Total Pages: 207

ISBN-13: 0387788662

DOWNLOAD EBOOK

- Combines material from many areas of mathematics, including algebra, geometry, and analysis, so students see connections between these areas - Applies material to physics so students appreciate the applications of abstract mathematics - Assumes only linear algebra and calculus, making an advanced subject accessible to undergraduates - Includes 142 exercises, many with hints or complete solutions, so text may be used in the classroom or for self study


Emmy Noether

Emmy Noether

Author: M. B. W. Tent

Publisher: CRC Press

Published: 2008-10-10

Total Pages: 194

ISBN-13: 1439865345

DOWNLOAD EBOOK

This book, written primarily for the young adult reader, tells the life story of Emmy Noether, the most important female mathematician of our time. Because no one expected her to grow into an important scientist, the records of her early life are sketchy. After all, it was assumed that she would grow up to be a wife and mother. Instead, she was a g


Physics from Symmetry

Physics from Symmetry

Author: Jakob Schwichtenberg

Publisher: Springer

Published: 2017-12-01

Total Pages: 294

ISBN-13: 3319666312

DOWNLOAD EBOOK

This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations.


Emmy Noether 1882–1935

Emmy Noether 1882–1935

Author: DICK

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 213

ISBN-13: 1468405357

DOWNLOAD EBOOK

N 1964 at the World's Fair in New York I City one room was dedicated solely to mathematics. The display included a very at tractive and informative mural, about 13 feet long, sponsored by one of the largest com puter manufacturing companies and present ing a brief survey of the history of mathemat ics. Entitled, "Men of Modern Mathematics," it gives an outline of the development of that science from approximately 1000 B. C. to the year of the exhibition. The first centuries of this time span are illustrated by pictures from the history of art and, in particular, architec ture; the period since 1500 is illuminated by portraits of mathematicians, including brief descriptions of their lives and professional achievements. Close to eighty portraits are crowded into a space of about fourteen square feet; among them, only one is of a woman. Her face-mature, intelligent, neither pretty nor handsome-may suggest her love of sci- 1 Emmy Noether ence and creative gift, but certainly reveals a likeable personality and a genuine kindness of heart. It is the portrait of Emmy Noether ( 1882 - 1935), surrounded by the likenesses of such famous men as Joseph Liouville (1809-1882), Georg Cantor (1845-1918), and David Hilbert (1862 -1943). It is accom panied by the following text: Emmy Noether, daughter of the mathemati cian Max, was often called "Der Noether," as if she were a man.