Stanford mathematician and NPR Math Guy Keith Devlin explains why, fun aside, video games are the ideal medium to teach middle-school math. Aimed primarily at teachers and education researchers, but also of interest to game developers who want to produce videogames for mathematics education, Mathematics Education for a New Era: Video Games as a Med
In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts of groups, sets, subsets, topology, Boolean algebra, and other mathematical subjects. 200 illustrations.
A wonderful book about Leonardo Fibonacci's rediscovery of the Golden Ratio in the 13th century. Includes explanations of the Golden Rectangle, the Golden Spiral, and Fibonacci's own math problems (with solutions).
This carefully researched survey examines how architects now use digital tools and physics to build spatial constructs that would have been inconceivable even ten years ago. Architecture has always relied on mathematics to achieve visual harmony, structural integrity, and logical construction. Now digital tools and an increasing interest in physics have given architects the means to describe and build spatial constructs that would have been inconceivable even ten years ago. This carefully researched survey of forty-six international projects offers an overview of how different strategies are being employed through accessible illustrations and clear text. Each section presents case studies of projects by globally recognized architects in diagrams, photographs, and texts.
Presents a selection from the archives of the New York newspaper of its writings on mathematics from 1892 to 2010, covering such topics as chaos theory, statistics, cryptography, and computers.
Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.
"The ancient Greeks argued that the best life was filled with beauty, truth, justice, play and love. The mathematician Francis Su knows just where to find them."--Kevin Hartnett, Quanta Magazine" This is perhaps the most important mathematics book of our time. Francis Su shows mathematics is an experience of the mind and, most important, of the heart."--James Tanton, Global Math Project For mathematician Francis Su, a society without mathematical affection is like a city without concerts, parks, or museums. To miss out on mathematics is to live without experiencing some of humanity's most beautiful ideas. In this profound book, written for a wide audience but especially for those disenchanted by their past experiences, an award-winning mathematician and educator weaves parables, puzzles, and personal reflections to show how mathematics meets basic human desires--such as for play, beauty, freedom, justice, and love--and cultivates virtues essential for human flourishing. These desires and virtues, and the stories told here, reveal how mathematics is intimately tied to being human. Some lessons emerge from those who have struggled, including philosopher Simone Weil, whose own mathematical contributions were overshadowed by her brother's, and Christopher Jackson, who discovered mathematics as an inmate in a federal prison. Christopher's letters to the author appear throughout the book and show how this intellectual pursuit can--and must--be open to all.
Mathematics education research has blossomed into many different areas which we can see in the programmes of the ICME conferences as well as in the various survey articles in the Handbooks. However, all of these lines of research are trying to grapple with a common problem, the complexity of the process of learning mathematics.
This text addresses the need for a new mathematics text for careers using digital technology. The material is brought to life through several applications including the mathematics of screen and printer displays. The course, which covers binary arithmetic to Boolean algebra, is emerging throughout the country and may fill a need at your school. This unique text teaches topics such as binary fractions, hexadecimal numbers, and Venn diagrams to students with only a beginning algebra background.