Assessing the TMDL Approach to Water Quality Management

Assessing the TMDL Approach to Water Quality Management

Author: National Research Council

Publisher: National Academies Press

Published: 2001-07-24

Total Pages: 242

ISBN-13: 0309170702

DOWNLOAD EBOOK

Over the last 30 years, water quality management in the United States has been driven by the control of point sources of pollution and the use of effluent-based water quality standards. Under this paradigm, the quality of the nation's lakes, rivers, reservoirs, groundwater, and coastal waters has generally improved as wastewater treatment plants and industrial dischargers (point sources) have responded to regulations promulgated under authority of the 1972 Clean Water Act. These regulations have required dischargers to comply with effluent-based standards for criteria pollutants, as specified in National Pollutant Discharge Elimination System (NPDES) permits issued by the states and approved by the U.S. Environmental Protection Agency (EPA). Although successful, the NPDES program has not achieved the nation's water quality goals of "fishable and swimmable" waters largely because discharges from other unregulated nonpoint sources of pollution have not been as successfully controlled. Today, pollutants such as nutrients and sediment, which are often associated with nonpoint sources and were not considered criteria pollutants in the Clean Water Act, are jeopardizing water quality, as are habitat destruction, changes in flow regimes, and introduction of exotic species. This array of challenges has shifted the focus of water quality management from effluent-based to ambient- based water quality standards. Given the most recent lists of impaired waters submitted to EPA, there are about 21,000 polluted river segments, lakes, and estuaries making up over 300,000 river and shore miles and 5 million lake acres. The number of TMDLs required for these impaired waters is greater than 40,000. Under the 1992 EPA guidance or the terms of lawsuit settlements, most states are required to meet an 8- to 13-year deadline for completion of TMDLs. Budget requirements for the program are staggering as well, with most states claiming that they do not have the personnel and financial resources necessary to assess the condition of their waters, to list waters on 303d, and to develop TMDLs. A March 2000 report of the General Accounting Office (GAO) highlighted the pervasive lack of data at the state level available to set water quality standards, to determine what waters are impaired, and to develop TMDLs. This report represents the consensus opinion of the eight-member NRC committee assembled to complete this task. The committee met three times during a three-month period and heard the testimony of over 40 interested organizations and stakeholder groups. The NRC committee feels that the data and science have progressed sufficiently over the past 35 years to support the nation's return to ambient-based water quality management. Given reasonable expectations for data availability and the inevitable limits on our conceptual understanding of complex systems, statements about the science behind water quality management must be made with acknowledgment of uncertainties. This report explains that there are creative ways to accommodate this uncertainty while moving forward in addressing the nation's water quality challenges.


Assessing the TMDL Approach to Water Quality Management

Assessing the TMDL Approach to Water Quality Management

Author: Committee to Assess the Scientific Basis of the Total Maximum Daily Load Approach to Water Pollution Reduction

Publisher: National Academies Press

Published: 2001-08-07

Total Pages: 99

ISBN-13: 9780309090056

DOWNLOAD EBOOK

Over the last 30 years, water quality management in the United States has been driven by the control of point sources of pollution and the use of effluent-based water quality standards. Under this paradigm, the quality of the nation's lakes, rivers, reservoirs, groundwater, and coastal waters has generally improved as wastewater treatment plants and industrial dischargers (point sources) have responded to regulations promulgated under authority of the 1972 Clean Water Act. These regulations have required dischargers to comply with effluent-based standards for criteria pollutants, as specified in National Pollutant Discharge Elimination System (NPDES) permits issued by the states and approved by the U.S. Environmental Protection Agency (EPA). Although successful, the NPDES program has not achieved the nation's water quality goals of "fishable and swimmable" waters largely because discharges from other unregulated nonpoint sources of pollution have not been as successfully controlled. Today, pollutants such as nutrients and sediment, which are often associated with nonpoint sources and were not considered criteria pollutants in the Clean Water Act, are jeopardizing water quality, as are habitat destruction, changes in flow regimes, and introduction of exotic species. This array of challenges has shifted the focus of water quality management from effluent-based to ambient- based water quality standards. Given the most recent lists of impaired waters submitted to EPA, there are about 21,000 polluted river segments, lakes, and estuaries making up over 300,000 river and shore miles and 5 million lake acres. The number of TMDLs required for these impaired waters is greater than 40,000. Under the 1992 EPA guidance or the terms of lawsuit settlements, most states are required to meet an 8- to 13-year deadline for completion of TMDLs. Budget requirements for the program are staggering as well, with most states claiming that they do not have the personnel and financial resources necessary to assess the condition of their waters, to list waters on 303d, and to develop TMDLs. A March 2000 report of the General Accounting Office (GAO) highlighted the pervasive lack of data at the state level available to set water quality standards, to determine what waters are impaired, and to develop TMDLs. This report represents the consensus opinion of the eight-member NRC committee assembled to complete this task. The committee met three times during a three-month period and heard the testimony of over 40 interested organizations and stakeholder groups. The NRC committee feels that the data and science have progressed sufficiently over the past 35 years to support the nation's return to ambient-based water quality management. Given reasonable expectations for data availability and the inevitable limits on our conceptual understanding of complex systems, statements about the science behind water quality management must be made with acknowledgment of uncertainties. This report explains that there are creative ways to accommodate this uncertainty while moving forward in addressing the nation's water quality challenges.


Integrated Sustainable Urban Water, Energy, and Solids Management

Integrated Sustainable Urban Water, Energy, and Solids Management

Author: Vladimir Novotny

Publisher: John Wiley & Sons

Published: 2020-01-13

Total Pages: 416

ISBN-13: 1119593697

DOWNLOAD EBOOK

A guide for urban areas to achieve sustainability by recovering water, energy, and solids Integrated Sustainable Urban Water, Energy, and Solids Management presents an integrated and sustainable system of urban water, used (waste) water, and waste solids management that would save and protect water quality, recover energy and other resources from used water and waste solids including plastics, and minimize or eliminate the need for landfills. The author—a noted expert on the topic—explains how to accomplish sustainability with drainage infrastructures connected to receiving waters that protect or mimic nature and are resilient to natural and anthropogenic stresses, including extreme events. The book shows how to reduce emissions of greenhouse gasses to net zero level through water conservation, recycling, and generating blue and green energy from waste by emerging emission free technologies while simultaneously installing solar power on houses and wind power in communities. Water conservation and stormwater capture can provide good water quality for diverse applications from natural and reclaimed water to blue and green energy and other resources for use by present and future generations. This important book: Considers municipal solid waste as an ongoing source of energy and resources that will eliminate the need for landfills and can be processed along with used water Presents an integrated approach to urban sustainability Offers an approach for reducing greenhouse gas emissions by communities to net zero Written for students, urban planners, managers, and waste management professionals, Integrated Sustainable Urban Water, Energy, and Solids Management is a must-have guide for achieving sustainable integrated water, energy, and resource recovery in urban areas.