Did you know the moon helps stabilize Earth’s tilt, which effects our climate? From the ocean tides to animal migration and navigation, the moon affects life on Earth in many ways. Learn about all the ways the moon causes change on Earth. Then discover what would happen if we didn’t have the moon.
"What if?" questions stimulate people to think in new ways, to refresh old ideas, and to make new discoveries. In What If the Earth Had Two Moons, Neil Comins leads us on a fascinating ten-world journey as we explore what our planet would be like under alternative astronomical conditions. In each case, the Earth would be different, often in surprising ways. The title chapter, for example, gives us a second moon orbiting closer to Earth than the one we have now. The night sky is a lot brighter, but that won't last forever. Eventually the moons collide, with one extra-massive moon emerging after a period during which Earth sports a Saturn-like ring. This and nine and other speculative essays provide us with insights into the Earth as it exists today, while shedding new light on the burgeoning search for life on planets orbiting other stars. Appealing to adult and young adult alike, this book is a fascinating journey through physics and astronomy, and follows on the author's previous bestseller, What if the Moon Didn't Exist?, with completely new scenarios backed by the latest astronomical research.
Since the beginning of civilization, the origins of the Earth and Moon have been the subjects of continuing interest, speculation, and enquiry. These are also among the most challenging of all scientific problems. They are, perhaps to a unique degree, interdisciplinary, having attracted the attention of philosophers, astronomers, mathematicians, geologists, chemists, and physicists. A large and diverse literature has developed, far beyond the capacity of individuals to assimilate adequately. Consequently, most of those who attempt to present review-syntheses in the area tend to reflect the perspectives of their own particular disciplines. The present author's approach is that of a geochemist, strongly influenced by the basic phil osophy of Harold Urey. Whereas most astronomical phenomena are controlled by gravitational and magnetic fields, and by nuclear interactions, Urey (1952) emphasized that the formation of the solar system occurred in a pressure-temperature regime wherein the chemical properties of matter were at least as important as those of gravitational and magnetic fields. This was the principal theme of his 1952 book, "The Planets," which revolutionized our approach to this subject. In many subsequent papers, Urey strongly emphasized the importance of meteorites in providing critical evidence of chemical conditions in the primordial solar nebula, and of the chemical fractionation processes which occurred during formation of the terrestrial planets. This approach has been followed by most subsequent geochemists and cosmochemists.
The only work to date to collect data gathered during the American and Soviet missions in an accessible and complete reference of current scientific and technical information about the Moon.
From September 2007 to June 2008 the Space Studies Board conducted an international public seminar series, with each monthly talk highlighting a different topic in space and Earth science. The principal lectures from the series are compiled in Forging the Future of Space Science. The topics of these events covered the full spectrum of space and Earth science research, from global climate change, to the cosmic origins of life, to the exploration of the Moon and Mars, to the scientific research required to support human spaceflight. The prevailing messages throughout the seminar series as demonstrated by the lectures in this book are how much we have accomplished over the past 50 years, how profound are our discoveries, how much contributions from the space program affect our daily lives, and yet how much remains to be done. The age of discovery in space and Earth science is just beginning. Opportunities abound that will forever alter our destiny.
Origins of the Earth, Moon, and Life: An Interdisciplinary Approach presents state-of-the-art knowledge that is based on theories, experiments, observations, calculations, and analytical data from five astro-sciences, astronomy, astrobiology, astrogeology, astrophysics, and cosmochemistry. Beginning with the origin of elements, and moving on to cover the formation of the early Solar System, the giant impact model of the Earth and Moon, the oldest records of life, and the possibility of life on other planets in the Solar System, this interdisciplinary reference provides a complex understanding of the planets and the formation of life. Synthesizing concepts from all branches of astro-sciences into one, the book is a valuable reference for researchers in astrogeology, astrophysics, cosmochemistry, astrobiology, astronomy, and other space science fields, helping users better understand the intersection of these sciences. - Includes extensive figures and tables to enhance key concepts - Uses callout boxes throughout to provide context and deeper explanations - Presents up-to-date information on the universe, stars, planets, moons, and life in the solar system - Combines knowledge from the fields of astrogeology, astrophysics, cosmochemistry, astrobiology, and astronomy, helping readers understand the origins of the Earth, the moon, and life in our solar system
This fascinating book will stay with children every time they gaze up at the night sky. Through vivid pictures and engaging explanations, children will learn about many of the Moon’s mysteries: what makes it look like a silvery crescent one time and a chalk-white ball a few nights later, why it sometimes appears in the daytime, where it gets its light, and how scientists can predict its shape on your birthday a thousand years from now. Next Time You See the Moon is an ideal way to explain the science behind the shape of the Moon and bring about an evening outing no child—or grown-up—will soon forget. Awaken a sense of wonder in a child with the Next Time You See series from NSTA Kids. The books will inspire elementary-age children to experience the enchantment of everyday phenomena such as sunsets, seashells, fireflies, pill bugs, and more. Free supplementary activities are available on the NSTA website. Especially designed to be experienced with an adult—be it a parent, teacher, or friend—Next Time You See books serve as a reminder that you don’t have to look far to find something remarkable in nature.
Using werewolves and Wernher von Braun, Stonehenge and the sex lives of sea corals, aboriginal myths, and an Anglican bishop in this new book, the author weaves variegated information into a glimpse of Earth's closest celestial neighbor, whose mere presence inspires us to wonder what might be out there. Going beyond the discoveries of contemporary science, he presents a cultural assessment of our complex relationship with Earth's lifeless, rocky satellite. As well as offering an engaging perspective on such age old questions as "What would Earth be like without the moon?" he surveys the moon's mythical and religious significance and provokes existential soul searching through a lunar lens, inquiring, "Forty years ago, the first man put his footprint on the moon. Will we continue to use it as the screen onto which we cast our hopes and fears?" Drawing on materials from different cultures and epochs, he walks readers down a moonlit path illuminated by more than seventy-five vintage photographs and illustrations. From scientific discussions of the moon's origins and its chronobiological effects on the mating and feeding habits of animals to an illuminating interpretation of Bishop Francis Godwin's 1638 novel The Man in the Moone, his interdisciplinary explorations recast a familiar object in an original light.
The Conference on the Earth-Moon relationships brought together a number of distinguished scientists from different fields - such as Astronomy, Celestial Mechanics, Chemistry - but also scholars of Literature and Art, to discuss these relationships, their origins, and their influence on human activities and beliefs.
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.