A full review of the latest research findings on microbes involved in conventional aerobic nitrification, anaerobic ammonia oxidation, and related processes. • Examines the four principal groups of nitrifying microbes including conventional aerobic bacterial ammonia oxidizers, recently discovered aerobic archaeal ammonia oxidizers, anaerobic ammonia-oxidizing planctomycetes, and nitrite-oxidizing bacteria. • Provides current information on the ecology, phylogeny, biochemistry, molecular biology, and genomics of each group of microbes. • Discusses the latest industrial applications of nitrification and anammox processes, and explores the ecology of nitrification in marine, freshwater, soil, and wastewater environments.
State-of-the-art update on methods and protocols dealing with the detection, isolation and characterization of macromolecules and their hosting organisms that facilitate nitrification and related processes in the nitrogen cycle as well as the challenges of doing so in very diverse environments. Provides state-of-the-art update on methods and protocols Deals with the detection, isolation and characterization of macromolecules and their hosting organisms Deals with the challenges of very diverse environments
Presenting the first continental-scale assessment of reactive nitrogen in the environment, this book sets the related environmental problems in context by providing a multidisciplinary introduction to the nitrogen cycle processes. Issues of upscaling from farm plot and city to national and continental scales are addressed in detail with emphasis on opportunities for better management at local to global levels. The five key societal threats posed by reactive nitrogen are assessed, providing a framework for joined-up management of the nitrogen cycle in Europe, including the first cost-benefit analysis for different reactive nitrogen forms and future scenarios. Incorporating comprehensive maps, a handy technical synopsis and a summary for policy makers, this landmark volume is an essential reference for academic researchers across a wide range of disciplines, as well as stakeholders and policy makers. It is also a valuable tool in communicating the key environmental issues and future challenges to the wider public.
Nitrogen in the Marine Environment provides information pertinent to the many aspects of the nitrogen cycle. This book presents the advances in ocean productivity research, with emphasis on the role of microbes in nitrogen transformations with excursions to higher trophic levels. Organized into 24 chapters, this book begins with an overview of the abundance and distribution of the various forms of nitrogen in a number of estuaries. This text then provides a comparison of the nitrogen cycling of various ecosystems within the marine environment. Other chapters consider chemical distributions and methodology as an aid to those entering the field. This book discusses as well the enzymology of the initial steps of inorganic nitrogen assimilation. The final chapter deals with the philosophy and application of modeling as an investigative method in basic research on nitrogen dynamics in coastal and open-ocean marine environments. This book is a valuable resource for plant biochemists, microbiologists, aquatic ecologists, and bacteriologists.
Nitrogen is an essential element in biological systems, and one that often limits production in both aquatic and terrestrial systems. Due to its requirement in biological macromolecules, its acquisition and cycling have the potential to structure microbial communities, as well as to control productivity on the ecosystem scale. In addition, its versatile redox chemistry is the basis of complex biogeochemical transformations that control the inventory of fixed nitrogen, both in local environments and over geological time. Although many of the pathways in the microbial nitrogen cycle were described more than a century ago, additional fundamental pathways have been discovered only recently. These findings imply that we still have much to learn about the microbial nitrogen cycle, the organisms responsible for it, and their interactions in natural and human environments. Progress in nitrogen cycle research has been facilitated by recent rapid technological advances, especially in genomics and isotopic approaches. In this Research Topic, we reviewed the leading edge of nitrogen cycle research based on these approaches, as well as by exploring microbial processes in modern ecosystems.
During the past three decades there has been a large amount of research on biological nitrogen fixation, in part stimulated by increasing world prices of nitrogen-containing fertilizers and environmental concerns. In the last several years, research on plant--microbe interactions, and symbiotic and asymbiotic nitrogen fixation has become truly interdisciplinary in nature, stimulated to some degree by the use of modern genetic techniques. These methodologies have allowed us to make detailed analyses of plant and bacterial genes involved in symbiotic processes and to follow the growth and persistence of the root-nodule bacteria and free-living nitrogen-fixing bacteria in soils. Through the efforts of a large number of researchers we now have a better understanding of the ecology of rhizobia, environmental parameters affecting the infection and nodulation process, the nature of specificity, the biochemistry of host plants and microsymbionts, and chemical signalling between symbiotic partners. This volume gives a summary of current research efforts and knowledge in the field of biological nitrogen fixation. Since the research field is diverse in nature, this book presents a collection of papers in the major research area of physiology and metabolism, genetics, evolution, taxonomy, ecology, and international programs.
Biochar Application: Essential Soil Microbial Ecology outlines the cutting-edge research on the interactions of complex microbial populations and their functional, structural, and compositional dynamics, as well as the microbial ecology of biochar application to soil, the use of different phyto-chemical analyses, possibilities for future research, and recommendations for climate change policy. Biochar, or charcoal produced from plant matter and applied to soil, has become increasingly recognized as having the potential to address multiple contemporary concerns, such as agricultural productivity and contaminated ecosystem amelioration, primarily by removing carbon dioxide from the atmosphere and improving soil functions. Biochar Application is the first reference to offer a complete assessment of the various impacts of biochar on soil and ecosystems, and includes chapters analyzing all aspects of biochar technology and application to soil, from ecogenomic analyses and application ratios to nutrient cycling and next generation sequencing. Written by a team of international authors with interdisciplinary knowledge of biochar, this reference will provide a platform where collaborating teams can find a common resource to establish outcomes and identify future research needs throughout the world. - Includes multiple tables and figures per chapter to aid in analysis and understanding - Includes a comprehensive table of the methods used within the contents, ecosystems, contaminants, future research, and application opportunities explored in the book - Includes knowledge gaps and directions of future research to stimulate further discussion in the field and in climate change policy - Outlines the latest research on the interactions of complex microbial populations and their functional, structural, and compositional dynamics - Offers an assessment of the impacts of biochar on soil and ecosystems
Sustainability has a major part to play in the global challenge of continued development of regions, countries, and continents all around the World and biological nitrogen fixation has a key role in this process. This volume begins with chapters specifically addressing crops of major global importance, such as soybeans, rice, and sugar cane. It continues with a second important focus, agroforestry, and describes the use and promise of both legume trees with their rhizobial symbionts and other nitrogen-fixing trees with their actinorhizal colonization. An over-arching theme of all chapters is the interaction of the plants and trees with microbes and this theme allows other aspects of soil microbiology, such as interactions with arbuscular mycorrhizal fungi and the impact of soil-stress factors on biological nitrogen fixation, to be addressed. Furthermore, a link to basic science occurs through the inclusion of chapters describing the biogeochemically important nitrogen cycle and its key relationships among nitrogen fixation, nitrification, and denitrification. The volume then provides an up-to-date view of the production of microbial inocula, especially those for legume crops.
This book highlights the latest discoveries about the nitrogen cycle in the soil. It introduces the concept of nitrogen fixation and covers important aspects of nitrogen in soil and ecology such as its distribution and occurrence, soil microflora and fauna and their role in N-fixation. The importance of plant growth-promoting microbes for a sustainable agriculture, e.g. arbuscular mycorrhizae in N-fixation, is discussed as well as perspectives of metagenomics, microbe-plant signal transduction in N-ecology and related aspects. This book enables the reader to bridge the main gaps in knowledge and carefully presents perspectives on the ecology of biotransformations of nitrogen in soil.