The Mathematics of Mechanobiology

The Mathematics of Mechanobiology

Author: Antonio DeSimone

Publisher: Springer Nature

Published: 2020-06-29

Total Pages: 217

ISBN-13: 3030451976

DOWNLOAD EBOOK

This book presents the state of the art in mathematical research on modelling the mechanics of biological systems – a science at the intersection between biology, mechanics and mathematics known as mechanobiology. The book gathers comprehensive surveys of the most significant areas of mechanobiology: cell motility and locomotion by shape control (Antonio DeSimone); models of cell motion and tissue growth (Benoît Perthame); numerical simulation of cardiac electromechanics (Alfio Quarteroni); and power-stroke-driven muscle contraction (Lev Truskinovsky). Each section is self-contained in terms of the biomechanical background, and the content is accessible to all readers with a basic understanding of differential equations and numerical analysis. The book disentangles the phenomenological complexity of the biomechanical problems, while at the same time addressing the mathematical complexity with invaluable clarity. The book is intended for a wide audience, in particular graduate students and applied mathematicians interested in entering this fascinating field.


Mechanobiology

Mechanobiology

Author: Glen L. Niebur

Publisher: Elsevier

Published: 2019-12-01

Total Pages: 256

ISBN-13: 0128179325

DOWNLOAD EBOOK

Mechanobiology: From Molecular Sensing to Disease will provide a review of the current state of understanding of mechanobiology and its role in health and disease. It covers: Current understanding of the main molecular pathways by which cells sense and respond to mechanical stimuli, A review of diseases that with known or purported mechanobiological underpinnings; The role of mechanobiology in tissue engineering and regenerative medicine; Experimental methods to capture mechanobiological phenomena; Computational models in mechanobiology. Presents our current understanding of the main molecular pathways by which cells sense and respond to mechanical stimuli Provides a review of diseases with known or purported mechanobiological underpinnings Includes the role of mechanobiology in tissue engineering and regenerative medicine Covers experimental methods to capture mechanobiological phenomena


The Mathematics and Mechanics of Biological Growth

The Mathematics and Mechanics of Biological Growth

Author: Alain Goriely

Publisher: Springer

Published: 2017-05-29

Total Pages: 651

ISBN-13: 038787710X

DOWNLOAD EBOOK

This monograph presents a general mathematical theory for biological growth. It provides both a conceptual and a technical foundation for the understanding and analysis of problems arising in biology and physiology. The theory and methods are illustrated on a wide range of examples and applications. A process of extreme complexity, growth plays a fundamental role in many biological processes and is considered to be the hallmark of life itself. Its description has been one of the fundamental problems of life sciences, but until recently, it has not attracted much attention from mathematicians, physicists, and engineers. The author herein presents the first major technical monograph on the problem of growth since D’Arcy Wentworth Thompson’s 1917 book On Growth and Form. The emphasis of the book is on the proper mathematical formulation of growth kinematics and mechanics. Accordingly, the discussion proceeds in order of complexity and the book is divided into five parts. First, a general introduction on the problem of growth from a historical perspective is given. Then, basic concepts are introduced within the context of growth in filamentary structures. These ideas are then generalized to surfaces and membranes and eventually to the general case of volumetric growth. The book concludes with a discussion of open problems and outstanding challenges. Thoughtfully written and richly illustrated to be accessible to readers of varying interests and background, the text will appeal to life scientists, biophysicists, biomedical engineers, and applied mathematicians alike.


Multiscale Modeling in Biomechanics and Mechanobiology

Multiscale Modeling in Biomechanics and Mechanobiology

Author: Suvranu De

Publisher: Springer

Published: 2014-10-10

Total Pages: 287

ISBN-13: 1447165993

DOWNLOAD EBOOK

Presenting a state-of-the-art overview of theoretical and computational models that link characteristic biomechanical phenomena, this book provides guidelines and examples for creating multiscale models in representative systems and organisms. It develops the reader's understanding of and intuition for multiscale phenomena in biomechanics and mechanobiology, and introduces a mathematical framework and computational techniques paramount to creating predictive multiscale models. Biomechanics involves the study of the interactions of physical forces with biological systems at all scales – including molecular, cellular, tissue and organ scales. The emerging field of mechanobiology focuses on the way that cells produce and respond to mechanical forces – bridging the science of mechanics with the disciplines of genetics and molecular biology. Linking disparate spatial and temporal scales using computational techniques is emerging as a key concept in investigating some of the complex problems underlying these disciplines. Providing an invaluable field manual for graduate students and researchers of theoretical and computational modelling in biology, this book is also intended for readers interested in biomedical engineering, applied mechanics and mathematical biology.


Introduction to Cell Mechanics and Mechanobiology

Introduction to Cell Mechanics and Mechanobiology

Author: Christopher R. Jacobs

Publisher: Garland Science

Published: 2012-11-16

Total Pages: 350

ISBN-13: 1135042659

DOWNLOAD EBOOK

Introduction to Cell Mechanics and Mechanobiology is designed for a one-semester course in the mechanics of the cell offered to advanced undergraduate and graduate students in biomedical engineering, bioengineering, and mechanical engineering. It teaches a quantitative understanding of the way cells detect, modify, and respond to the physical prope


Mechanics of Biological Systems

Mechanics of Biological Systems

Author: Seungman Park

Publisher: Morgan & Claypool Publishers

Published: 2019-11-06

Total Pages: 135

ISBN-13: 1643273922

DOWNLOAD EBOOK

This book is an introduction to the mechanical properties, the force generating capacity, and the sensitivity to mechanical cues of the biological system. To understand how these qualities govern many essential biological processes, we also discuss how to measure them. However, before delving into the details and the techniques, we will first learn the operational definitions in mechanics, such as force, stress, elasticity, viscosity and so on. This book will explore the mechanics at three different length scales – molecular, cellular, and tissue levels – sequentially, and discuss the measurement techniques to quantify the intrinsic mechanical properties, force generating capacity, mechanoresponsive processes in the biological systems, and rupture forces.


Mechanobiology Handbook

Mechanobiology Handbook

Author: Jiro Nagatomi

Publisher: CRC Press

Published: 2011-03-15

Total Pages: 564

ISBN-13: 1420091220

DOWNLOAD EBOOK

Mechanobiology-the study of the effects of mechanical environments on the biological processes of cells-has evolved from traditional biomechanics via the incorporation of strong elements of molecular and cell biology. Currently, a broad range of organ systems are being studied by surgeons, physicians, basic scientists, and engineers. These mechanob


Mechanobiology Handbook, Second Edition

Mechanobiology Handbook, Second Edition

Author: Jiro Nagatomi

Publisher: CRC Press

Published: 2018-12-07

Total Pages: 705

ISBN-13: 042981674X

DOWNLOAD EBOOK

Mechanobiology—the study of the effects of mechanics on biological events—has evolved to answer numerous research questions. Mechanobiology Handbook 2nd Edition is a reference book for engineers, scientists, and clinicians who are interested in mechanobiology and a textbook for senior undergraduate to graduate level students of this growing field. Readers will gain a comprehensive review of recent research findings as well as elementary chapters on solid mechanics, fluid mechanics, and molecular analysis techniques. The new edition presents, in addition to the chapters of the first edition, homework problem sets that are available online and reviews of research in uncovered areas. Moreover, the new edition includes chapters on statistical analysis, design of experiments and optical imaging. The editors of this book are researchers and educators in mechanobiology. They realized a need for a single volume to assist course instructors as a guide for didactic teaching of mechanobiology to a diverse student body. A mechanobiology course is frequently made up of both undergraduate and graduate students pursuing degrees in engineering, biology, or integrated engineering and biology. Their goal was to present both the elementary and cutting-edge aspects of mechanobiology in a manner that is accessible to students from many different academic levels and from various disciplinary backgrounds. Moreover, it is their hope that the readers of Mechanobiology Handbook 2nd Edition will find study questions at the end of each chapter useful for long-term learning and further discussion. Comprehensive collection of reviews of recent research Introductory materials in mechanics, biology, and statistics Discussion of pioneering and emerging mechanobiology concepts Presentation of cutting-edge mechanobiology research findings across various fields and organ systems End of chapter study questions, available online Considering the complexity of the mechanics and the biology of the human body, most of the world of mechanobiology remains to be studied. Since the field is still developing, the Mechanobiology Handbook raises many different viewpoints and approaches with the intention of stimulating further research endeavours.


Mechanobiology in Health and Disease

Mechanobiology in Health and Disease

Author: Stefaan Verbruggen

Publisher: Academic Press

Published: 2018-08-09

Total Pages: 530

ISBN-13: 0128129530

DOWNLOAD EBOOK

Mechanobiology in Health and Disease brings together contributions from leading biologists, clinicians, physicists and engineers in one convenient volume, providing a unified source of information for researchers in this highly multidisciplinary area. Opening chapters provide essential background information on cell mechanotransduction and essential mechanobiology methods and techniques. Other sections focus on the study of mechanobiology in healthy systems, including bone, tendons, muscles, blood vessels, the heart and the skin, as well as mechanobiology studies of pregnancy. Final chapters address the nascent area of mechanobiology in disease, from the study of bone conditions, skin diseases and heart diseases to cancer. A discussion of future perspectives for research completes each chapter in the volume. This is a timely resource for both early-career and established researchers working on mechanobiology. Provides an essential digest of primary research from many fields and disciplines in one convenient volume Covers both experimental approaches and descriptions of mechanobiology problems from mathematical and numerical perspectives Addresses the hot topic of mechanobiology in disease, a particularly dynamic field of frontier science


Continuum Modeling in Mechanobiology

Continuum Modeling in Mechanobiology

Author: Larry A. Taber

Publisher: Springer Nature

Published: 2020-06-15

Total Pages: 545

ISBN-13: 3030432092

DOWNLOAD EBOOK

This book examines key theoretical tools that are currently used to develop mathematical models as an aid in understanding the biological response of cells and tissues to mechanical stimuli. Problems in growth and remodeling, tissue and organ development, and functional adaptation are all covered. Chapters on tensor analysis and nonlinear elasticity provide the necessary background for understanding the engineering theories that are currently used to solve challenges in mechanobiology. This is an ideal book for biomechanical engineers who work on problems in mechanobiology and tissue engineering.