This book provides the mathematical foundations of networks of linear control systems, developed from an algebraic systems theory perspective. This includes a thorough treatment of questions of controllability, observability, realization theory, as well as feedback control and observer theory. The potential of networks for linear systems in controlling large-scale networks of interconnected dynamical systems could provide insight into a diversity of scientific and technological disciplines. The scope of the book is quite extensive, ranging from introductory material to advanced topics of current research, making it a suitable reference for graduate students and researchers in the field of networks of linear systems. Part I can be used as the basis for a first course in Algebraic System Theory, while Part II serves for a second, advanced, course on linear systems. Finally, Part III, which is largely independent of the previous parts, is ideally suited for advanced research seminars aimed at preparing graduate students for independent research. “Mathematics of Networks of Linear Systems” contains a large number of exercises and examples throughout the text making it suitable for graduate courses in the area.
Investigates automata networks as algebraic structures and develops their theory in line with other algebraic theories, such as those of semigroups, groups, rings, and fields. The authors also investigate automata networks as products of automata, that is, as compositions of automata obtained by cascading without feedback or with feedback of various restricted types or, most generally, with the feedback dependencies controlled by an arbitrary directed graph. They survey and extend the fundamental results in regard to automata networks, including the main decomposition theorems of Letichevsky, of Krohn and Rhodes, and of others.
This book gives an introduction to functional analysis in a way that is tailored to fit the needs of the researcher or student. The book explains the basic results of functional analysis as well as relevant topics in numerical analysis. Applications of functional analysis are given by considering numerical methods for solving partial differential equations and integral equations. The material is especially useful for researchers and students who wish to work in theoretical numerical analysis and seek a background in the "tools of the trade" covered in this book.
This concise, readable book provides a sampling of the very large, active, and expanding field of artificial neural network theory. It considers select areas of discrete mathematics linking combinatorics and the theory of the simplest types of artificial neural networks. Neural networks have emerged as a key technology in many fields of application, and an understanding of the theories concerning what such systems can and cannot do is essential. Some classical results are presented with accessible proofs, together with some more recent perspectives, such as those obtained by considering decision lists. In addition, probabilistic models of neural network learning are discussed. Graph theory, some partially ordered set theory, computational complexity, and discrete probability are among the mathematical topics involved. Pointers to further reading and an extensive bibliography make this book a good starting point for research in discrete mathematics and neural networks.
This volume of research papers comprises the proceedings of the first International Conference on Mathematics of Neural Networks and Applications (MANNA), which was held at Lady Margaret Hall, Oxford from July 3rd to 7th, 1995 and attended by 116 people. The meeting was strongly supported and, in addition to a stimulating academic programme, it featured a delightful venue, excellent food and accommo dation, a full social programme and fine weather - all of which made for a very enjoyable week. This was the first meeting with this title and it was run under the auspices of the Universities of Huddersfield and Brighton, with sponsorship from the US Air Force (European Office of Aerospace Research and Development) and the London Math ematical Society. This enabled a very interesting and wide-ranging conference pro gramme to be offered. We sincerely thank all these organisations, USAF-EOARD, LMS, and Universities of Huddersfield and Brighton for their invaluable support. The conference organisers were John Mason (Huddersfield) and Steve Ellacott (Brighton), supported by a programme committee consisting of Nigel Allinson (UMIST), Norman Biggs (London School of Economics), Chris Bishop (Aston), David Lowe (Aston), Patrick Parks (Oxford), John Taylor (King's College, Lon don) and Kevin Warwick (Reading). The local organiser from Huddersfield was Ros Hawkins, who took responsibility for much of the administration with great efficiency and energy. The Lady Margaret Hall organisation was led by their bursar, Jeanette Griffiths, who ensured that the week was very smoothly run.
Mathematical techniques pervade current research in computer networking, yet are not taught to most computer science undergraduates. This self-contained, highly-accessible book bridges the gap, providing the mathematical grounding students and professionals need to successfully design or evaluate networking systems. The only book of its kind, it brings together information previously scattered amongst multiple texts. It first provides crucial background in basic mathematical tools, and then illuminates the specific theories that underlie computer networking. Coverage includes: * Basic probability * Statistics * Linear Algebra * Optimization * Signals, Systems, and Transforms, including Fourier series and transforms, Laplace transforms, DFT, FFT, and Z transforms * Queuing theory * Game Theory * Control theory * Information theory