The Logic of Quantum Mechanics: Volume 15

The Logic of Quantum Mechanics: Volume 15

Author: Enrico G. Beltrametti

Publisher: Cambridge University Press

Published: 2010-12-09

Total Pages: 340

ISBN-13: 9780521168496

DOWNLOAD EBOOK

This volume examines the logic, theory and mathematics of quantum mechanics in a clear and thorough way.


An Introduction to Hilbert Space and Quantum Logic

An Introduction to Hilbert Space and Quantum Logic

Author: David W. Cohen

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 159

ISBN-13: 1461388414

DOWNLOAD EBOOK

Historically, nonclassical physics developed in three stages. First came a collection of ad hoc assumptions and then a cookbook of equations known as "quantum mechanics". The equations and their philosophical underpinnings were then collected into a model based on the mathematics of Hilbert space. From the Hilbert space model came the abstaction of "quantum logics". This book explores all three stages, but not in historical order. Instead, in an effort to illustrate how physics and abstract mathematics influence each other we hop back and forth between a purely mathematical development of Hilbert space, and a physically motivated definition of a logic, partially linking the two throughout, and then bringing them together at the deepest level in the last two chapters. This book should be accessible to undergraduate and beginning graduate students in both mathematics and physics. The only strict prerequisites are calculus and linear algebra, but the level of mathematical sophistication assumes at least one or two intermediate courses, for example in mathematical analysis or advanced calculus. No background in physics is assumed.


The Logic of Quantum Mechanics: Volume 15

The Logic of Quantum Mechanics: Volume 15

Author: Enrico G. Beltrametti

Publisher: Cambridge University Press

Published: 2014-05-14

Total Pages: 338

ISBN-13: 9781107266759

DOWNLOAD EBOOK

This volume examines the logic, theory and mathematics of quantum mechanics in a clear and thorough way.


Quantum Theory for Mathematicians

Quantum Theory for Mathematicians

Author: Brian C. Hall

Publisher: Springer Science & Business Media

Published: 2013-06-19

Total Pages: 566

ISBN-13: 1461471168

DOWNLOAD EBOOK

Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.


Quantum Mechanics

Quantum Mechanics

Author: Leonard Susskind

Publisher: Basic Books (AZ)

Published: 2014-02-25

Total Pages: 386

ISBN-13: 0465036678

DOWNLOAD EBOOK

From the bestselling author of The Theoretical Minimum, a DIY introduction to the math and science of quantum physics First he taught you classical mechanics. Now, physicist Leonard Susskind has teamed up with data engineer Art Friedman to present the theory and associated mathematics of the strange world of quantum mechanics. In this follow-up to The Theoretical Minimum, Susskind and Friedman provide a lively introduction to this famously difficult field, which attempts to understand the behavior of sub-atomic objects through mathematical abstractions. Unlike other popularizations that shy away from quantum mechanics’ weirdness, Quantum Mechanics embraces the utter strangeness of quantum logic. The authors offer crystal-clear explanations of the principles of quantum states, uncertainty and time dependence, entanglement, and particle and wave states, among other topics, and each chapter includes exercises to ensure mastery of each area. Like The Theoretical Minimum, this volume runs parallel to Susskind’s eponymous Stanford University-hosted continuing education course. An approachable yet rigorous introduction to a famously difficult topic, Quantum Mechanics provides a tool kit for amateur scientists to learn physics at their own pace.


Quantum Logic

Quantum Logic

Author: Karl Svozil

Publisher: Springer Science & Business Media

Published: 1998-09-01

Total Pages: 246

ISBN-13: 9789814021074

DOWNLOAD EBOOK

Quantum Logic deals with the foundations of quantum mechanics and, related to it, the behaviour of finite, discrete deterministic systems. The quantum logical approach is particulalry suitable for the investigation and exclusion of certain hidden parameter models of quantum mechanics. Conversely, it can be used to embed quantum universes into classical ones. It is also highly relevant for the characterization of finite automation. This book has been written with a broad readership in mind. Great care has been given to the motivation of the concepts and to the explicit and detailed discussions of examples.


Quantum, Probability, Logic

Quantum, Probability, Logic

Author: Meir Hemmo

Publisher: Springer Nature

Published: 2020-04-07

Total Pages: 635

ISBN-13: 3030343162

DOWNLOAD EBOOK

This volume provides a broad perspective on the state of the art in the philosophy and conceptual foundations of quantum mechanics. Its essays take their starting point in the work and influence of Itamar Pitowsky, who has greatly influenced our understanding of what is characteristically non-classical about quantum probabilities and quantum logic, and this serves as a vantage point from which they reflect on key ongoing debates in the field. Readers will find a definitive and multi-faceted description of the major open questions in the foundations of quantum mechanics today, including: Is quantum mechanics a new theory of (contextual) probability? Should the quantum state be interpreted objectively or subjectively? How should probability be understood in the Everett interpretation of quantum mechanics? What are the limits of the physical implementation of computation? The impact of this volume goes beyond the exposition of Pitowsky’s influence: it provides a unique collection of essays by leading thinkers containing profound reflections on the field. Chapter 1. Classical logic, classical probability, and quantum mechanics (Samson Abramsky) Chapter 2. Why Scientific Realists Should Reject the Second Dogma of Quantum Mechanic (Valia Allori) Chapter 3. Unscrambling Subjective and Epistemic Probabilities (Guido Bacciagaluppi) Chapter 4. Wigner’s Friend as a Rational Agent (Veronika Baumann, Časlav Brukner) Chapter 5. Pitowsky's Epistemic Interpretation of Quantum Mechanics and the PBR Theorem (Yemima Ben-Menahem) Chapter 6. On the Mathematical Constitution and Explanation of Physical Facts (Joseph Berkovitz) Chapter 7. Everettian probabilities, the Deutsch-Wallace theorem and the Principal Principle (Harvey R. Brown, Gal Ben Porath) Chapter 8. ‘Two Dogmas’ Redu (Jeffrey Bub) Chapter 9. Physical Computability Theses (B. Jack Copeland, Oron Shagrir) Chapter 10. Agents in Healey’s Pragmatist Quantum Theory: A Comparison with Pitowsky’s Approach to Quantum Mechanics (Mauro Dorato) Chapter 11. Quantum Mechanics As a Theory of Observables and States and, Thereby, As a Theory of Probability (John Earman, Laura Ruetsche) Chapter 12. The Measurement Problem and two Dogmas about Quantum Mechanic (Laura Felline) Chapter 13. There Is More Than One Way to Skin a Cat: Quantum Information Principles In a Finite World(Amit Hagar) Chapter 14. Is Quantum Mechanics a New Theory of Probability? (Richard Healey) Chapter 15. Quantum Mechanics as a Theory of Probability (Meir Hemmo, Orly Shenker) Chapter 16. On the Three Types of Bell's Inequalities (Gábor Hofer-Szabó) Chapter 17. On the Descriptive Power of Probability Logic (Ehud Hrushovski) Chapter 18. The Argument against Quantum Computers (Gil Kalai) Chapter 19. Why a Relativistic Quantum Mechanical World Must be Indeterministic (Avi Levy, Meir Hemmo) Chapter 20. Subjectivists about Quantum Probabilities Should be Realists about Quantum States (Wayne C. Myrvold) Chapter 21. The Relativistic Einstein-Podolsky-Rosen Argument (Michael Redhead) Chapter 22. What price statistical independence? How Einstein missed the photon.(Simon Saunders) Chapter 23. How (Maximally) Contextual is Quantum Mechanics? (Andrew W. Simmons) Chapter 24. Roots and (Re)Sources of Value (In)Definiteness Versus Contextuality (Karl Svozil) Chapter 25: Schrödinger’s Reaction to the EPR Paper (Jos Uffink) Chapter 26. Derivations of the Born Rule (Lev Vaidman) Chapter 27. Dynamical States and the Conventionality of (Non-) Classicality (Alexander Wilce).


The Logico-Algebraic Approach to Quantum Mechanics

The Logico-Algebraic Approach to Quantum Mechanics

Author: C.A. Hooker

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 611

ISBN-13: 9401017956

DOWNLOAD EBOOK

The twentieth century has witnessed a striking transformation in the un derstanding of the theories of mathematical physics. There has emerged clearly the idea that physical theories are significantly characterized by their abstract mathematical structure. This is in opposition to the tradi tional opinion that one should look to the specific applications of a theory in order to understand it. One might with reason now espouse the view that to understand the deeper character of a theory one must know its abstract structure and understand the significance of that struc ture, while to understand how a theory might be modified in light of its experimental inadequacies one must be intimately acquainted with how it is applied. Quantum theory itself has gone through a development this century which illustrates strikingly the shifting perspective. From a collection of intuitive physical maneuvers under Bohr, through a formative stage in which the mathematical framework was bifurcated (between Schrödinger and Heisenberg) to an elegant culmination in von Neumann's Hilbert space formulation the elementary theory moved, flanked even at the later stage by the ill-understood formalisms for the relativistic version and for the field-theoretic altemative; after that we have a gradual, but constant, elaboration of all these quantal theories as abstract mathematical struc tures (their point of departure being von Neumann's formalism) until at the present time theoretical work is heavily preoccupied with the manip ulation of purely abstract structures.


Linear Operators for Quantum Mechanics

Linear Operators for Quantum Mechanics

Author: Thomas F. Jordan

Publisher: Courier Corporation

Published: 2012-09-20

Total Pages: 162

ISBN-13: 0486140547

DOWNLOAD EBOOK

Suitable for advanced undergraduates and graduate students, this compact treatment examines linear space, functionals, and operators; diagonalizing operators; operator algebras; and equations of motion. 1969 edition.