'Why are atoms so small?' asks 'naive physicist' in Erwin Schrodinger's book 'What is Life? The Physical Aspect of the Living Cell'. 'The question is wrong' answers the author, 'the actual problem is why we are built of such an enormous number of these particles'. The idea that everything is built of atoms is quite an old one. It seems that l Democritus himself borrowed it from some obscure Phoenician source . The arguments for the existence of small indivisible units of matter were quite simple. 2 According to Lucretius observable matter would disappear by 'wear and tear' (the world exists for a sufficiently long, if not infinitely long time) unless there are some units which cannot be further split into parts. th However, in the middle of the 19 century any reference to the atomic structure of matter was considered among European physicists as a sign of extremely bad taste and provinciality. The hypothesis of the ancient Greeks (for Lucretius had translated Epicurean philosophy into Latin hexameters) was at that time seen as bringing nothing positive to exact science. The properties of gaseous, liquid and solid bodies, as well as the behaviour of heat and energy, were successfully described by the rapidly developing science of thermodynamics.
The theoretical basis of this book is developed ab ovo. This requires dealing with several problems arising in physical chemistry including the concept of entropy as a thermodynamic coordinate and its relation to probability. Thus Maxwell Boltzmann and Gibbs statistical thermodynamics, and quantum statistics are made considerable use of. A statistical mechanical derivation of the law of mass action for gases and solids is presented, and the problems arising in the application of the law of mass action to the liquid state are addressed. Molecular interactions and how to take them into account when deriving the law of mass action is discussed in some detail sketching a way alternativ to the use of activities. Finally, attention is drawn to the statistical mechanical background to Linear Free Energy Relationships (LFER's) and of Isokinetic Relationships (IKR's) and their connections with molecular interactions.
An advanced-level textbook of physical chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. This book is a part of four volume series, entitled "A Textbook of Physical Chemistry – Volume I, II, III, IV". CONTENTS: Chapter 1. Quantum Mechanics – I: Postulates of quantum mechanics; Derivation of Schrodinger wave equation; Max-Born interpretation of wave functions; The Heisenberg’s uncertainty principle; Quantum mechanical operators and their commutation relations; Hermitian operators (elementary ideas, quantum mechanical operator for linear momentum, angular momentum and energy as Hermition operator); The average value of the square of Hermitian operators; Commuting operators and uncertainty principle(x & p; E & t); Schrodinger wave equation for a particle in one dimensional box; Evaluation of average position, average momentum and determination of uncertainty in position and momentum and hence Heisenberg’s uncertainty principle; Pictorial representation of the wave equation of a particle in one dimensional box and its influence on the kinetic energy of the particle in each successive quantum level; Lowest energy of the particle. Chapter 2. Thermodynamics – I: Brief resume of first and second Law of thermodynamics; Entropy changes in reversible and irreversible processes; Variation of entropy with temperature, pressure and volume; Entropy concept as a measure of unavailable energy and criteria for the spontaneity of reaction; Free energy, enthalpy functions and their significance, criteria for spontaneity of a process; Partial molar quantities (free energy, volume, heat concept); Gibb’s-Duhem equation. Chapter 3. Chemical Dynamics – I: Effect of temperature on reaction rates; Rate law for opposing reactions of Ist order and IInd order; Rate law for consecutive & parallel reactions of Ist order reactions; Collision theory of reaction rates and its limitations; Steric factor; Activated complex theory; Ionic reactions: single and double sphere models; Influence of solvent and ionic strength; The comparison of collision and activated complex theory. Chapter 4. Electrochemistry – I: Ion-Ion Interactions: The Debye-Huckel theory of ion- ion interactions; Potential and excess charge density as a function of distance from the central ion; Debye Huckel reciprocal length; Ionic cloud and its contribution to the total potential; Debye - Huckel limiting law of activity coefficients and its limitations; Ion-size effect on potential; Ion-size parameter and the theoretical mean-activity coefficient in the case of ionic clouds with finite-sized ions; Debye - Huckel-Onsager treatment for aqueous solutions and its limitations; Debye-Huckel-Onsager theory for non-aqueous solutions; The solvent effect on the mobality at infinite dilution; Equivalent conductivity (Λ) vs. concentration c 1/2 as a function of the solvent; Effect of ion association upon conductivity (Debye- Huckel - Bjerrum equation). Chapter 5. Quantum Mechanics – II: Schrodinger wave equation for a particle in a three dimensional box; The concept of degeneracy among energy levels for a particle in three dimensional box; Schrodinger wave equation for a linear harmonic oscillator & its solution by polynomial method; Zero point energy of a particle possessing harmonic motion and its consequence; Schrodinger wave equation for three dimensional Rigid rotator; Energy of rigid rotator; Space quantization; Schrodinger wave equation for hydrogen atom, separation of variable in polar spherical coordinates and its solution; Principle, azimuthal and magnetic quantum numbers and the magnitude of their values; Probability distribution function; Radial distribution function; Shape of atomic orbitals (s,p & d). Chapter 6. Thermodynamics – II: Classius-Clayperon equation; Law of mass action and its thermodynamic derivation; Third law of thermodynamics (Nernest heat theorem, determination of absolute entropy, unattainability of absolute zero) and its limitation; Phase diagram for two completely miscible components systems; Eutectic systems, Calculation of eutectic point; Systems forming solid compounds Ax By with congruent and incongruent melting points; Phase diagram and thermodynamic treatment of solid solutions. Chapter 7. Chemical Dynamics – II: Chain reactions: hydrogen-bromine reaction, pyrolysis of acetaldehyde, decomposition of ethane; Photochemical reactions (hydrogen - bromine & hydrogen -chlorine reactions); General treatment of chain reactions (ortho-para hydrogen conversion and hydrogen - bromine reactions); Apparent activation energy of chain reactions, Chain length; Rice-Herzfeld mechanism of organic molecules decomposition(acetaldehyde); Branching chain reactions and explosions ( H2-O2 reaction); Kinetics of (one intermediate) enzymatic reaction : Michaelis-Menton treatment; Evaluation of Michaelis 's constant for enzyme-substrate binding by Lineweaver-Burk plot and Eadie-Hofstae methods; Competitive and non-competitive inhibition. Chapter 8. Electrochemistry – II: Ion Transport in Solutions: Ionic movement under the influence of an electric field; Mobility of ions; Ionic drift velocity and its relation with current density; Einstein relation between the absolute mobility and diffusion coefficient; The Stokes- Einstein relation; The Nernst -Einstein equation; Walden’s rule; The Rate-process approach to ionic migration; The Rate process equation for equivalent conductivity; Total driving force for ionic transport, Nernst - Planck Flux equation; Ionic drift and diffusion potential; the Onsager phenomenological equations; The basic equation for the diffusion; Planck-Henderson equation for the diffusion potential.
This book provides an introduction to the analysis of stochastic dynamic models in biology and medicine. The main aim is to offer a coherent set of probabilistic techniques and mathematical tools which can be used for the simulation and analysis of various biological phenomena. These tools are illustrated on a number of examples. For each example, the biological background is described, and mathematical models are developed following a unified set of principles. These models are then analyzed and, finally, the biological implications of the mathematical results are interpreted. The biological topics covered include gene expression, biochemistry, cellular regulation, and cancer biology. The book will be accessible to graduate students who have a strong background in differential equations, the theory of nonlinear dynamical systems, Markovian stochastic processes, and both discrete and continuous state spaces, and who are familiar with the basic concepts of probability theory.
PRINCIPLES OF MODERN CHEMISTRY has dominated the honors and high mainstream general chemistry courses and is considered the standard for the course. The fifth edition is a substantial revision that maintains the rigor of previous editions but reflects the exciting modern developments taking place in chemistry today. Authors David W. Oxtoby and H. P. Gillis provide a unique approach to learning chemical principles that emphasizes the total scientific process'from observation to application'placing general chemistry into a complete perspective for serious-minded science and engineering students. Chemical principles are illustrated by the use of modern materials, comparable to equipment found in the scientific industry. Students are therefore exposed to chemistry and its applications beyond the classroom. This text is perfect for those instructors who are looking for a more advanced general chemistry textbook.
Chemistry 2e is designed to meet the scope and sequence requirements of the two-semester general chemistry course. The textbook provides an important opportunity for students to learn the core concepts of chemistry and understand how those concepts apply to their lives and the world around them. The book also includes a number of innovative features, including interactive exercises and real-world applications, designed to enhance student learning. The second edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Substantial improvements have been made in the figures, illustrations, and example exercises that support the text narrative. Changes made in Chemistry 2e are described in the preface to help instructors transition to the second edition.
Exploring Mathematical Modeling in Biology through Case Studies and Experimental Activities provides supporting materials for courses taken by students majoring in mathematics, computer science or in the life sciences. The book's cases and lab exercises focus on hypothesis testing and model development in the context of real data. The supporting mathematical, coding and biological background permit readers to explore a problem, understand assumptions, and the meaning of their results. The experiential components provide hands-on learning both in the lab and on the computer. As a beginning text in modeling, readers will learn to value the approach and apply competencies in other settings. Included case studies focus on building a model to solve a particular biological problem from concept and translation into a mathematical form, to validating the parameters, testing the quality of the model and finally interpreting the outcome in biological terms. The book also shows how particular mathematical approaches are adapted to a variety of problems at multiple biological scales. Finally, the labs bring the biological problems and the practical issues of collecting data to actually test the model and/or adapting the mathematics to the data that can be collected.
Understanding radionuclide behaviour in the natural environment is essential to the sustainable development of the nuclear industry and key to assessing potential environmental risks reliably. Minimising those risks is essential to enhancing public confidence in nuclear technology. Scientific knowledge in this field has developed greatly over the last decade.Radionuclide behaviour in the natural environment provides a comprehensive overview of the key processes and parameters affecting radionuclide mobility and migration.After an introductory chapter, part one explores radionuclide chemistry in the natural environment, including aquatic chemistry and the impact of natural organic matter and microorganisms. Part two discusses the migration and radioecological behavior of radionuclides. Topics include hydrogeology, sorption and colloidal reactions as well as in-situ investigations. Principles of modelling coupled geochemical, transport and radioecological properties are also discussed. Part three covers application issues: assessment of radionuclide behaviour in contaminated sites, taking Chernobyl as an example, estimation of radiological exposure to the population, performance assessment considerations related to deep geological repositories, and remediation concepts for contaminated sites.With its distinguished editors and international team of expert contributors, Radionuclide behaviour in the natural environment is an essential tool for all those interested or involved in nuclear energy, from researchers, designers and industrial operators to environmental scientists. It also provides a comprehensive guide for academics of all levels in this field. - Provides a comprehensive overview of the key processes and parameters affecting radionuclide mobility and migration - Explores radionuclide chemistry in the natural environment - Discusses the migration and radioecological behaviour of radionuclides
Although the basic theories of thermodynamics are adequately covered by a number of existing texts, there is little literature that addresses more advanced topics. In this comprehensive work the author redresses this balance, drawing on his twenty-five years of experience of teaching thermodynamics at undergraduate and postgraduate level, to produce a definitive text to cover thoroughly, advanced syllabuses. The book introduces the basic concepts which apply over the whole range of new technologies, considering: a new approach to cycles, enabling their irreversibility to be taken into account; a detailed study of combustion to show how the chemical energy in a fuel is converted into thermal energy and emissions; an analysis of fuel cells to give an understanding of the direct conversion of chemical energy to electrical power; a detailed study of property relationships to enable more sophisticated analyses to be made of both high and low temperature plant and irreversible thermodynamics, whose principles might hold a key to new ways of efficiently covering energy to power (e.g. solar energy, fuel cells). Worked examples are included in most of the chapters, followed by exercises with solutions. By developing thermodynamics from an explicitly equilibrium perspective, showing how all systems attempt to reach a state of equilibrium, and the effects of these systems when they cannot, the result is an unparalleled insight into the more advanced considerations when converting any form of energy into power, that will prove invaluable to students and professional engineers of all disciplines.