Providing the first comprehensive treatment, this book covers all aspects of the laser Doppler and phase Doppler measurement techniques, including light scattering from small particles, fundamental optics, system design, signal and data processing, tracer particle generation, and applications in single and two-phase flows. The book is intended as both a reference book for more experienced users as well as an instructional book for students. It provides ample material as a basis for a lecture course on the subject and represents one of the most comprehensive treatments of the phase Doppler technique to date. The book will serve as a valuable reference book in any fluid mechanics laboratory where the laser Doppler or phase Doppler techniques are used. This work reflects the authors' long practical experience in the development of the techniques and equipment, as the many examples confirm.
Increasing possibilities of computer-aided data processing have caused a new revival of optical techniques in many areas of mechanical and chemical en gineering. Optical methods have a long tradition in heat and mass transfer and in fluid dynamics. Global experimental information is not sufficient for developing constitution equations to describe complicated phenomena in fluid dynamics or in transfer processes by a computer program . Furthermore, a detailed insight with high local and temporal resolution into the thermo-and fluiddynamic situations is necessary. Sets of equations for computer program in thermo dynamics and fluid dynamics usually consist of two types of formulations: a first one derived from the conservation laws for mass, energy and momentum, and a second one mathematically modelling transport processes like laminar or turbulent diffusion. For reliably predicting the heat transfer, for example, the velocity and temperature field in the boundary layer must be known, or a physically realistic and widely valid correlation describing the turbulence must be avail able. For a better understanding of combustion processes it is necessary to know the local concentration and temperature just ahead of the flame and in the ignition zone.
This Advanced Study Institute was held at \-lellesley College, Wellesley, MA. , from 3 to 12 August 1980. It followed by four years the second "Capri ~,chool on Photon Correlation Spectroscopy". During the intervening period there had been many new applications of dynamic light scattering techniques to the study of systems whose properties depend either on collective molecular interactions or on the formation or activity of supramo1ecu1ar structures. Con sequently, emphasis at this conference was on light scattering studies of subjects such as dynamical correlations in dense polymer solutions, phase transitions in gels, spinodal decomposition of binary fluids, Benard instabilities in nonequilibrium fluids, the formation of micelles and phospholipid vesicles, and movements of the molecular assemblies of muscle tissue. The instructional pro gramme also included tutorial lectures on two complementary spec troscopic techniques which have benefited from dramatic advances in instrumentation, these being small angle X-ray (SAXS) and small angle neutron (SANS) scattering. Strong cold neutron and synchro tron X-ray sources have become available, and data now can be acquired rapidly with newly developed position-sensitive detectors. Several reviews of recent applications of SAXS and SANS were also provided. The organizers of the ASI hoped to provide a forum for theoreticians and experimentalists to assess advances in fields which, although related, were sufficiently different that a great deal of unfamiliar information could be communicated. The order ing of the papers in this volume closely approximates that of the talks presented at the Advanced Study Institute.
Laser measurement technology has evolved in the last years in a versatile and reflationary way. Today, its methods are indispensable for research and development activities as well as for production technology. Every physicist and engineer should therefore gain a working knowledge of laser measurement technology. This book closes the gap of existing textbooks. It introduces in a comprehensible presentation laser measurement technology in all its aspects. Numerous figures, graphs and tables allow for a fast access into the matter. In the first part of the book the important physical and optical basics are described being necessary to understand laser measurement technology. In the second part technically significant measuring methods are explained and application examples are presented. Target groups of this textbook are students of natural and engineering sciences as well as working physicists and engineers, who are interested to make themselves familiar with laser measurement technology and its fascinating potentials.
This open access book provides a comprehensive overview of the application of the newest laser and microscope/ophthalmoscope technology in the field of high resolution imaging in microscopy and ophthalmology. Starting by describing High-Resolution 3D Light Microscopy with STED and RESOLFT, the book goes on to cover retinal and anterior segment imaging and image-guided treatment and also discusses the development of adaptive optics in vision science and ophthalmology. Using an interdisciplinary approach, the reader will learn about the latest developments and most up to date technology in the field and how these translate to a medical setting. High Resolution Imaging in Microscopy and Ophthalmology – New Frontiers in Biomedical Optics has been written by leading experts in the field and offers insights on engineering, biology, and medicine, thus being a valuable addition for scientists, engineers, and clinicians with technical and medical interest who would like to understand the equipment, the applications and the medical/biological background. Lastly, this book is dedicated to the memory of Dr. Gerhard Zinser, co-founder of Heidelberg Engineering GmbH, a scientist, a husband, a brother, a colleague, and a friend.
Devoted to new optical measurement techniques in industry as well as the life sciences, this book has a fresh perspective on the development of modern optical sensors, which are essential for the control of parameters in industrial and biomedical applications.
In fluid mechanics, velocity measurement is fundamental in order to improve the behavior knowledge of the flow. Velocity maps help us to understand the mean flow structure and its fluctuations, in order to further validate codes. Laser velocimetry is an optical technique for velocity measurements; it is based on light scattering by tiny particles assumed to follow the flow, which allows the local fluid flow velocity and its fluctuations to be determined. It is a widely used non-intrusive technique to measure velocities in fluid flows, either locally or in a map. This book presents the various techniques of laser velocimetry, as well as their specific qualities: local measurements or in plane maps, mean or instantaneous values, 3D measurements. Flow seeding with particles is described with currently used products, as well as the appropriate aerosol generators. Post-processing of data allows us to extract synthetic information from measurements and to perform comparisons with results issued from CFD codes. The principles and characteristics of the different available techniques, all based on the scattering of light by tiny particles embedded in the flow, are described in detail; showing how they deliver different information, either locally or in a map, mean values and turbulence characteristics.
This invaluable book offers a comprehensive overview of the technologies and applications of optoelectronic sensors. Based on the R&D experience of more than 70 engineers and scientists, highly representative of the Italian academic and industrial community in this area, this book provides a broad and accurate description of the state-of-the-art optoelectronic technologies for sensing. The most innovative approaches, such as the use of photonic crystals, squeezed states of light and microresonators for sensing, are considered. Application areas range from environment to medicine and healthcare, from aeronautics, space, and defence to food and agriculture.Written in a self-contained manner, this volume presents both the sensing methodologies and the fundamentals of the various technologies, as well as their applications in the real world.
The SEM Handbook of Experimental Structural Dynamics stands as a comprehensive overview and reference for its subject, applicable to workers in research, product design and manufacture, and practice. The Handbook is devoted primarily to the areas of structural mechanics served by the Society for Experimental Mechanics IMAC community, such as modal analysis, rotating machinery, structural health monitoring, shock and vibration, sensors and instrumentation, aeroelasticity, ground testing, finite element techniques, model updating, sensitivity analysis, verification and validation, experimental dynamics sub-structuring, quantification of margin and uncertainty, and testing of civil infrastructure. Chapters offer comprehensive, detailed coverage of decades of scientific and technologic advance and all demonstrate an experimental perspective. Several sections specifically discuss the various types of experimental testing and common practices utilized in the automotive, aerospace, and civil structures industries. · History of Experimental Structural Mechanics · DIC Methods - Dynamic Photogrammetry · LDV Methods · Applied Digital Signal Processing · Introduction to Spectral - Basic Measurements · Structural Measurements - FRF · Random and Shock Testing · Rotating System Analysis Methods * · Sensors Signal Conditioning Instrumentation · Design of Modal Tests · Experimental Modal Methods · Experimental Modal Parameter Evaluation · Operating Modal Analysis Methods * · Analytical Numerical Substructuring · Finite Element Model Correlation · Model Updating · Damping of Materials and Structures · Model Calibration and Validation in Structures* · Uncertainty Quantification: UQ, QMU and Statistics * · Nonlinear System Analysis Methods (Experimental) · Structural Health Monitoring and Damage Detection · Experimental Substructure Modeling · Modal Modeling · Response (Impedance) Modeling · Nonlinear Normal Mode Analysis Techniques (Analytical) * · Modal Modeling with Nonlinear Connection Elements (Analytical) · Acoustics of Structural Systems (VibroAcoustics) * · Automotive Structural Testing * · Civil Structural Testing · Aerospace Perspective for Modeling and Validation · Sports Equipment Testing * · Applied Math for Experimental Structural Mechanics * Chapter Forthcoming Contributions present important theory behind relevant experimental methods as well as application and technology. Topical authors emphasize and dissect proven methods and offer detail beyond a simple review of the literature. Additionally, chapters cover practical needs of scientists and engineers who are new to the field. In most cases, neither the pertinent theory nor, in particular, the practical issues have been presented formally in current academic textbooks. Each chapter in the Handbook represents a ’must read’ for someone new to the subject or for someone returning to the field after an absence. Reference lists in each chapter consist of the seminal papers in the literature. This Handbook stands in parallel to the SEM Handbook of Experimental Solid Mechanics, where this Handbook focuses on experimental dynamics of structures at a macro-scale often involving multiple components and materials where the SEM Handbook of Experimental Solid Mechanics focuses on experimental mechanics of materials at a nano-scale and/or micro-scale.