A delightful tour of the greatest ideas of math, showing how math intersects with philosophy, science, art, business, current events, and everyday life, by an acclaimed science communicator and regular contributor to the "New York Times."
The Joy of Finite Mathematics: The Language and Art of Math teaches students basic finite mathematics through a foundational understanding of the underlying symbolic language and its many dialects, including logic, set theory, combinatorics (counting), probability, statistics, geometry, algebra, and finance. Through detailed explanations of the concepts, step-by-step procedures, and clearly defined formulae, readers learn to apply math to subjects ranging from reason (logic) to finance (personal budget), making this interactive and engaging book appropriate for non-science, undergraduate students in the liberal arts, social sciences, finance, economics, and other humanities areas. The authors utilize important historical facts, pose interesting and relevant questions, and reference real-world events to challenge, inspire, and motivate students to learn the subject of mathematical thinking and its relevance. The book is based on the authors' experience teaching Liberal Arts Math and other courses to students of various backgrounds and majors, and is also appropriate for preparing students for Florida's CLAST exam or similar core requirements. - Highlighted definitions, rules, methods, and procedures, and abundant tables, diagrams, and graphs, clearly illustrate important concepts and methods - Provides end-of-chapter vocabulary and concept reviews, as well as robust review exercises and a practice test - Contains information relevant to a wide range of topics, including symbolic language, contemporary math, liberal arts math, social sciences math, basic math for finance, math for humanities, probability, and the C.L.A.S.T. exam - Optional advanced sections and challenging problems are included for use at the discretion of the instructor - Online resources include PowerPoint Presentations for instructors and a useful student manual
Ideas, puzzles, games from around the world, historic background, graphics, and recent math breakthroughs, from the author of The joy of mathematics and The mathematics calendar. Published by Wide World Publishing, PO Box 476, San Carlos, CA 94070. Annotation copyrighted by Book News, Inc., Portland, OR
"Have you ever played the addictive card game SET? Have you ever wondered about the connections between games and mathematics? . . . The Joy of SET takes readers on a fascinating journey into this seemingly simple card game and reveals its surprisingly deep and diverse mathematical dimensions. Absolutely no mathematical background is necessary to enjoy this book - all you need is a sense of curiosity and adventure. Originally invented in 1974 by Marsha Falco and officially released in 1991, SET has gained a widespread, loyal following. SET's eighty-one cards consist of one, two, or three symbols of different shapes (diamond, oval, squiggle), shadings (solid, striped, open), and colors (green, purple, red). In order to win, players must identify 'sets' of three cards for which each characteristic is the same - or different - on all the cards. SET's strategic and unique design opens connections to a plethora of mathematical disciplines, including geometry, modular arithmetic, combinatorics, probability, linear algebra, and computer simulations. The Joy of SET looks at these areas as well as avenues for further mathematical exploration. As the authors show, the relationship between SET and mathematics runs in both directions - playing this game has generated new mathematics, and the math has led to new questions about the game itself."--Provided by publisher.
Wouldn't it be great if all school teachers (from kindergarten through high school) would share the joy of mathematics with their students, rather than focus only on the prescribed curriculum that will subsequently be tested? This book reveals some of the wonders of mathematics that are often missing from classrooms. Here's your chance to catch up with the math gems you may have missed. Using jargon-free language and many illustrations, the authors—all veteran math educators—explore five areas—arithmetic, algebra, geometry, probability, and the ways in which mathematics can reinforce common sense. Among other things, you'll learn "the rule of 72," which enables you to quickly determine how long it will take your bank account to double its value at a specific interest rate. Other handy techniques include an automatic algorithm for multiplying numbers mentally and a clever application that will allow you to convert from miles to kilometers (or the reverse) mentally. A delightful presentation of geometric novelties reveals relationships that could have made your study of geometry more fun and enlightening. In the area of probability there is a host of interesting examples: from the famous Monty-Hall problem to the counterintuitive probability of two people having the same birthday in a crowded room. Finally, the authors demonstrate how math will make you a better thinker by improving your organizing abilities and providing useful and surprising solutions to common mathematics problems. You'll come away with an appreciation for math you never thought possible and a true appreciation for this "queen of the sciences."
There is a range and richness to numbers. They can come alive, cease to be symbols written on a black board, and lead the reader into a world of intellectual adventure where calculations are thrilling. In Figuring: The Joy of Numbers, Shakuntala Devi dramatizes the endless fascination of numbers and their ability to amaze and entertain. She offers easy-to-learn short cuts on how to add long columns in your head, multiply, divide, and find square roots quickly, almost magically. Fractions, decimals, and compound interest become clear and easy to deal with. The author takes delight in working out huge problems mentally, and sometimes even faster than computers. In Figuring she shares her secrets with you.
This up-to-date introductory treatment employs category theory to explore the theory of structures. Its unique approach stresses concrete categories and presents a systematic view of factorization structures, offering a unifying perspective on earlier work and summarizing recent developments. Numerous examples, ranging from general to specific, illuminate the text. 1990 edition, updated 2004.
Winner of the Mathematics Association of America's 2021 Euler Book Prize, this is an inclusive vision of mathematics—its beauty, its humanity, and its power to build virtues that help us all flourish“This is perhaps the most important mathematics book of our time. Francis Su shows mathematics is an experience of the mind and, most important, of the heart.”—James Tanton, Global Math Project"A good book is an entertaining read. A great book holds up a mirror that allows us to more clearly see ourselves and the world we live in. Francis Su’s Mathematics for Human Flourishing is both a good book and a great book."—MAA Reviews For mathematician Francis Su, a society without mathematical affection is like a city without concerts, parks, or museums. To miss out on mathematics is to live without experiencing some of humanity’s most beautiful ideas.In this profound book, written for a wide audience but especially for those disenchanted by their past experiences, an award‑winning mathematician and educator weaves parables, puzzles, and personal reflections to show how mathematics meets basic human desires—such as for play, beauty, freedom, justice, and love—and cultivates virtues essential for human flourishing. These desires and virtues, and the stories told here, reveal how mathematics is intimately tied to being human. Some lessons emerge from those who have struggled, including philosopher Simone Weil, whose own mathematical contributions were overshadowed by her brother’s, and Christopher Jackson, who discovered mathematics as an inmate in a federal prison. Christopher’s letters to the author appear throughout the book and show how this intellectual pursuit can—and must—be open to all.
This text covers the parts of contemporary set theory relevant to other areas of pure mathematics. After a review of "naïve" set theory, it develops the Zermelo-Fraenkel axioms of the theory before discussing the ordinal and cardinal numbers. It then delves into contemporary set theory, covering such topics as the Borel hierarchy and Lebesgue measure. A final chapter presents an alternative conception of set theory useful in computer science.