Describes and interrelates the following processes: cooperative alpha processes in a cold liquid, structural relaxation in the glass near Tg, the Johari-Goldstein beta process, the Williams-Götze process in a warm liquid, fast nonactivated cage rattling and boson peak, and ultraslow Fischer modes.
Describes and interrelates the following processes: cooperative alpha processes in a cold liquid, structural relaxation in the glass near Tg, the Johari-Goldstein beta process, the Williams-Götze process in a warm liquid, fast nonactivated cage rattling and boson peak, and ultraslow Fischer modes.
Understanding cooperative phenomena far from equilibrium is one of the fascinating challenges of present-day many-body physics. Glassy behaviour and the physical ageing process of such materials are paradigmatic examples. The present volume, primarily intended as introduction and reference, collects six extensive lectures addressing selected experimental and theoretical issues in the field of glassy systems.
Written by renowned researchers in the field, this up-to-date treatise fills the gap for a high-level work discussing current materials and processes. It covers all the steps involved, from vitrification, relaxation and viscosity, right up to the prediction of glass properties, paving the way for improved methods and applications. For solid state physicists and chemists, materials scientists, and those working in the ceramics industry. With a preface by L. David Pye and a foreword by Edgar D. Zanotto
Glass and State Transitions in Food and Biological Materials describes how glass transition has been applied to food micro-structure, food processing, product development, storage studies, packaging development and other areas. This book has been structured so that readers can initially grasp the basic principles and instrumentation, before moving through the various applications. In summary, the book will provide the “missing link” between food science and material science/polymer engineering. This will allow food scientists to better understand the concept and applications of thermal properties.
A glass is disordered material like a viscous liquid and behaves mechanically like a solid. A glass is normally formed by supercooling the viscous liquid fast enough to avoid crystallization, and the liquid-glass transition occurs in diverse manners depending on the materials, their history, and the supercooling processes, among other factors. The glass transition in colloids, molecular systems, and polymers is studied worldwide. This book presents a unified theory of the liquid-glass transition on the basis of the two band model from statistical quantum field theory associated with the temperature Green's function method. It is firmly original in its approach and will be of interest to researchers and students specializing in the glass transition across the physical sciences. - Examines key theoretical problems of the liquid-glass transition and related phenomena - Clarifies the mechanism and the framework of the liquid-glass transition
The work described in this book originates from a major effort to develop a fundamental theory of the glass and the jamming transitions. The first chapters guide the reader through the phenomenology of supercooled liquids and structural glasses and provide the tools to analyze the most frequently used models able to predict the complex behavior of such systems. A fundamental outcome is a detailed theoretical derivation of an effective thermodynamic potential, along with the study of anomalous vibrational properties of sphere systems. The interested reader can find in these pages a clear and deep analysis of mean-field models as well as the description of advanced beyond-mean-field perturbative expansions. To investigate important second-order phase transitions in lattice models, the last part of the book proposes an innovative theoretical approach, based on a multi-layer construction. The different methods developed in this thesis shed new light on important connections among constraint satisfaction problems, jamming and critical phenomena in complex systems, and lay part of the groundwork for a complete theory of amorphous solids.
A complete and timely overview of the topic, this Encyclopedia imparts knowledge of fundamental principles and their applications for academicians, scientists and researchers, while informing engineers, industrialists and entrepreneurs of the current state of the technology and its utilization. The most comprehensive source on polymer blends available on the market Offers a complete and timely overview of the topic Each article presents up to date research & development on a topic and its basic principles and applications, integrates case studies, laboratory and pilot plant experiments, and gives due reference to published and patented literature Equips academics, scientists and researchers with knowledge of fundamentals principles and their applications, and informs the engineers, industrialists and entrepreneurs about the state of the art technology and its applications