The Geometry of Ordinary Variational Equations

The Geometry of Ordinary Variational Equations

Author: Olga Krupkova

Publisher: Springer

Published: 2006-11-14

Total Pages: 261

ISBN-13: 3540696571

DOWNLOAD EBOOK

The book provides a comprehensive theory of ODE which come as Euler-Lagrange equations from generally higher-order Lagrangians. Emphasis is laid on applying methods from differential geometry (fibered manifolds and their jet-prolongations) and global analysis (distributions and exterior differential systems). Lagrangian and Hamiltonian dynamics, Hamilton-Jacobi theory, etc., for any Lagrangian system of any order are presented. The key idea - to build up these theories as related with the class of equivalent Lagrangians - distinguishes this book from other texts on higher-order mechanics. The reader should be familiar with elements of differential geometry, global analysis and the calculus of variations.


The Inverse Problem of the Calculus of Variations

The Inverse Problem of the Calculus of Variations

Author: Dmitry V. Zenkov

Publisher: Springer

Published: 2015-10-15

Total Pages: 296

ISBN-13: 9462391092

DOWNLOAD EBOOK

The aim of the present book is to give a systematic treatment of the inverse problem of the calculus of variations, i.e. how to recognize whether a system of differential equations can be treated as a system for extremals of a variational functional (the Euler-Lagrange equations), using contemporary geometric methods. Selected applications in geometry, physics, optimal control, and general relativity are also considered. The book includes the following chapters: - Helmholtz conditions and the method of controlled Lagrangians (Bloch, Krupka, Zenkov) - The Sonin-Douglas's problem (Krupka) - Inverse variational problem and symmetry in action: The Ostrogradskyj relativistic third order dynamics (Matsyuk.) - Source forms and their variational completion (Voicu) - First-order variational sequences and the inverse problem of the calculus of variations (Urban, Volna) - The inverse problem of the calculus of variations on Grassmann fibrations (Urban).


Calculus of Variations and Geometric Evolution Problems

Calculus of Variations and Geometric Evolution Problems

Author: F. Bethuel

Publisher: Springer Science & Business Media

Published: 1999-10-19

Total Pages: 316

ISBN-13: 9783540659778

DOWNLOAD EBOOK

The international summer school on Calculus of Variations and Geometric Evolution Problems was held at Cetraro, Italy, 1996. The contributions to this volume reflect quite closely the lectures given at Cetraro which have provided an image of a fairly broad field in analysis where in recent years we have seen many important contributions. Among the topics treated in the courses were variational methods for Ginzburg-Landau equations, variational models for microstructure and phase transitions, a variational treatment of the Plateau problem for surfaces of prescribed mean curvature in Riemannian manifolds - both from the classical point of view and in the setting of geometric measure theory.


Geometry in Partial Differential Equations

Geometry in Partial Differential Equations

Author: Agostino Prastaro

Publisher: World Scientific

Published: 1994

Total Pages: 482

ISBN-13: 9789810214074

DOWNLOAD EBOOK

This book emphasizes the interdisciplinary interaction in problems involving geometry and partial differential equations. It provides an attempt to follow certain threads that interconnect various approaches in the geometric applications and influence of partial differential equations. A few such approaches include: Morse-Palais-Smale theory in global variational calculus, general methods to obtain conservation laws for PDEs, structural investigation for the understanding of the meaning of quantum geometry in PDEs, extensions to super PDEs (formulated in the category of supermanifolds) of the geometrical methods just introduced for PDEs and the harmonic theory which proved to be very important especially after the appearance of the Atiyah-Singer index theorem, which provides a link between geometry and topology.


Handbook of Finsler geometry. 1 (2003)

Handbook of Finsler geometry. 1 (2003)

Author: Peter L. Antonelli

Publisher: Springer Science & Business Media

Published: 2003

Total Pages: 760

ISBN-13: 9781402015557

DOWNLOAD EBOOK

There are several mathematical approaches to Finsler Geometry, all of which are contained and expounded in this comprehensive Handbook. The principal bundles pathway to state-of-the-art Finsler Theory is here provided by M. Matsumoto. His is a cornerstone for this set of essays, as are the articles of R. Miron (Lagrange Geometry) and J. Szilasi (Spray and Finsler Geometry). After studying either one of these, the reader will be able to understand the included survey articles on complex manifolds, holonomy, sprays and KCC-theory, symplectic structures, Legendre duality, Hodge theory and Gauss-Bonnet formulas. Finslerian diffusion theory is presented by its founders, P. Antonelli and T. Zastawniak. To help with calculations and conceptualizations, a CD-ROM containing the software package FINSLER, based on MAPLE, is included with the book.


Classical and Quantum Physics

Classical and Quantum Physics

Author: G. Marmo

Publisher: Springer Nature

Published: 2019-10-26

Total Pages: 388

ISBN-13: 3030247481

DOWNLOAD EBOOK

This proceedings is based on the interdisciplinary workshop held in Madrid, 5-9 March 2018, dedicated to Alberto Ibort on his 60th birthday. Alberto has great and significantly contributed to many fields of mathematics and physics, always with highly original and innovative ideas.Most of Albertos’s scientific activity has been motivated by geometric ideas, concepts and tools that are deeply related to the framework of classical dynamics and quantum mechanics.Let us mention some of the fields of expertise of Alberto Ibort:Geometric Mechanics; Constrained Systems; Variational Principles; Multisymplectic structures for field theories; Super manifolds; Inverse problem for Bosonic and Fermionic systems; Quantum Groups, Integrable systems, BRST Symmetries; Implicit differential equations; Yang-Mills Theories; BiHamiltonian Systems; Topology Change and Quantum Boundary Conditions; Classical and Quantum Control; Orthogonal Polynomials; Quantum Field Theory and Noncommutative Spaces; Classical and Quantum Tomography; Quantum Mechanics on phase space; Wigner-Weyl formalism; Lie-Jordan Algebras, Classical and Quantum; Quantum-to-Classical transition; Contraction of Associative Algebras; contact geometry, among many others.In each contribution, one may find not only technical novelties but also completely new way of looking at the considered problems. Even an experienced reader, reading Alberto's contributions on his field of expertise, will find new perspectives on the considered topic.His enthusiasm is happily contagious, for this reason he has had, and still has, very bright students wishing to elaborate their PhD thesis under his guidance.What is more impressive, is the broad list of rather different topics on which he has contributed.


Geometric Aspects of Functional Analysis

Geometric Aspects of Functional Analysis

Author: V.D. Milman

Publisher: Springer

Published: 2007-05-09

Total Pages: 296

ISBN-13: 354045392X

DOWNLOAD EBOOK

This volume of original research papers from the Israeli GAFA seminar during the years 1996-2000 not only reports on more traditional directions of Geometric Functional Analysis, but also reflects on some of the recent new trends in Banach Space Theory and related topics. These include the tighter connection with convexity and the resulting added emphasis on convex bodies that are not necessarily centrally symmetric, and the treatment of bodies which have only very weak convex-like structure. Another topic represented here is the use of new probabilistic tools; in particular transportation of measure methods and new inequalities emerging from Poincaré-like inequalities.


The Geometry of Higher-Order Hamilton Spaces

The Geometry of Higher-Order Hamilton Spaces

Author: R. Miron

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 257

ISBN-13: 9401000700

DOWNLOAD EBOOK

This book is the first to present an overview of higher-order Hamilton geometry with applications to higher-order Hamiltonian mechanics. It is a direct continuation of the book The Geometry of Hamilton and Lagrange Spaces, (Kluwer Academic Publishers, 2001). It contains the general theory of higher order Hamilton spaces H(k)n, k>=1, semisprays, the canonical nonlinear connection, the N-linear metrical connection and their structure equations, and the Riemannian almost contact metrical model of these spaces. In addition, the volume also describes new developments such as variational principles for higher order Hamiltonians; Hamilton-Jacobi equations; higher order energies and law of conservation; Noether symmetries; Hamilton subspaces of order k and their fundamental equations. The duality, via Legendre transformation, between Hamilton spaces of order k and Lagrange spaces of the same order is pointed out. Also, the geometry of Cartan spaces of order k =1 is investigated in detail. This theory is useful in the construction of geometrical models in theoretical physics, mechanics, dynamical systems, optimal control, biology, economy etc.


Differentiability of Six Operators on Nonsmooth Functions and P-Variation

Differentiability of Six Operators on Nonsmooth Functions and P-Variation

Author: R. M. Dudley

Publisher: Springer Science & Business

Published: 1999-06-21

Total Pages: 300

ISBN-13: 9783540659754

DOWNLOAD EBOOK

The book is about differentiability of six operators on functions or pairs of functions: composition (f of g), integration (of f dg), multiplication and convolution of two functions, both varying, and the product integral and inverse operators for one function. The operators are differentiable with respect to p-variation norms with optimal remainder bounds. Thus the functions as arguments of the operators can be nonsmooth, possibly discontinuous, but four of the six operators turn out to be analytic (holomorphic) for some p-variation norms. The reader will need to know basic real analysis, including Riemann and Lebesgue integration. The book is intended for analysts, statisticians and probabilists. Analysts and statisticians have each studied the differentiability of some of the operators from different viewpoints, and this volume seeks to unify and expand their results.


The Geometry of Hamilton and Lagrange Spaces

The Geometry of Hamilton and Lagrange Spaces

Author: R. Miron

Publisher: Springer Science & Business Media

Published: 2001-05-31

Total Pages: 355

ISBN-13: 0792369262

DOWNLOAD EBOOK

This monograph presents for the first time the foundations of Hamilton Geometry. The concept of Hamilton Space, introduced by the first author and investigated by the authors, opens a new domain in differential geometry with large applications in mechanics, physics, optimal control, etc. The book consists of thirteen chapters. The first three chapters present the topics of the tangent bundle geometry, Finsler and Lagrange spaces. Chapters 4-7 are devoted to the construction of geometry of Hamilton spaces and the duality between these spaces and Lagrange spaces. The dual of a Finsler space is a Cartan space. Even this notion is completely new, its geometry has the same symmetry and beauty as that of Finsler spaces. Chapter 8 deals with symplectic transformations of cotangent bundle. The last five chapters present, for the first time, the geometrical theory and applications of Higher-Order Hamilton spaces. In particular, the case of order two is presented in detail. Audience: mathematicians, geometers, physicists, and mechanicians. This volume can also be recommended as a supplementary graduate text.