The Future of Metabolic Engineering

The Future of Metabolic Engineering

Author: Abhishek Sharma

Publisher: Nova Science Publishers

Published: 2021-12-28

Total Pages: 0

ISBN-13: 9781685073626

DOWNLOAD EBOOK

"The last two decades of scientific research have progressed to the point where metabolic engineering, which involves the modifying of metabolic pathways of animals, plants, and bacterial cells at biochemical and molecular levels, is feasible. Conceptually, metabolic engineering takes into account the identification of major blocks or control points in a metabolic pathway at the molecular level followed by removal of these limitations with the help of various cellular engineering interventions. Understanding the metabolic pathways requires appropriate experiment setup, molecular biology and biochemistry methods, computational modelling, data analysis, and interpretation to allow the researchers to manipulate them as per their needs. This book comprises a total of 12 chapters from multiple contributors of different countries around the world, including Brazil, Egypt, India, Saudi Arabia, and Turkey. This book provides deep insight into the past, present, and future of metabolic engineering in the animal, microbial, and plant system, communicating interdisciplinary research and relevant results in biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering"--


The Science and Applications of Synthetic and Systems Biology

The Science and Applications of Synthetic and Systems Biology

Author: Institute of Medicine

Publisher: National Academies Press

Published: 2011-12-30

Total Pages: 570

ISBN-13: 0309219396

DOWNLOAD EBOOK

Many potential applications of synthetic and systems biology are relevant to the challenges associated with the detection, surveillance, and responses to emerging and re-emerging infectious diseases. On March 14 and 15, 2011, the Institute of Medicine's (IOM's) Forum on Microbial Threats convened a public workshop in Washington, DC, to explore the current state of the science of synthetic biology, including its dependency on systems biology; discussed the different approaches that scientists are taking to engineer, or reengineer, biological systems; and discussed how the tools and approaches of synthetic and systems biology were being applied to mitigate the risks associated with emerging infectious diseases. The Science and Applications of Synthetic and Systems Biology is organized into sections as a topic-by-topic distillation of the presentations and discussions that took place at the workshop. Its purpose is to present information from relevant experience, to delineate a range of pivotal issues and their respective challenges, and to offer differing perspectives on the topic as discussed and described by the workshop participants. This report also includes a collection of individually authored papers and commentary.


Metabolic Engineering

Metabolic Engineering

Author: Sang Yup Lee

Publisher: John Wiley & Sons

Published: 2021-06-02

Total Pages: 1075

ISBN-13: 352782345X

DOWNLOAD EBOOK

Learn more about foundational and advanced topics in metabolic engineering in this comprehensive resource edited by leaders in the field Metabolic Engineering: Concepts and Applications delivers a one-stop resource for readers seeking a complete description of the concepts, models, and applications of metabolic engineering. This guide offers practical insights into the metabolic engineering of major cell lines, including E. Coli, Bacillus and Yarrowia Lipolytica, and organisms, including human, animal, and plant). The distinguished editors also offer readers resources on microbiome engineering and the use of metabolic engineering in bioremediation. Written in two parts, Metabolic Engineering begins with the essential models and strategies of the field, like Flux Balance Analysis, Quantitative Flux Analysis, and Proteome Constrained Models. It also provides an overview of topics like Pathway Design, Metabolomics, and Genome Editing of Bacteria and Eukarya. The second part contains insightful descriptions of the practical applications of metabolic engineering, including specific examples that shed light on the topics within. In addition to subjects like the metabolic engineering of animals, humans, and plants, you’ll learn more about: Metabolic engineering concepts and a historical perspective on their development The different modes of analysis, including flux balance analysis and quantitative flux analysis An illuminating and complete discussion of the thermodynamics of metabolic pathways The Genome architecture of E. coli, as well as genome editing of both bacteria and eukarya An in-depth treatment of the application of metabolic engineering techniques to organisms including corynebacterial, bacillus, and pseudomonas, and more Perfect for students of biotechnology, bioengineers, and biotechnologists, Metabolic Engineering: Concepts and Applications also has a place on the bookshelves of research institutes, biotechnological institutes and industry labs, and university libraries. It's comprehensive treatment of all relevant metabolic engineering concepts, models, and applications will be of use to practicing biotechnologists and bioengineers who wish to solidify their understanding of the field.


Genetic and Metabolic Engineering for Improved Biofuel Production from Lignocellulosic Biomass

Genetic and Metabolic Engineering for Improved Biofuel Production from Lignocellulosic Biomass

Author: Arindam Kuila

Publisher: Elsevier

Published: 2020-02-19

Total Pages: 256

ISBN-13: 0128179546

DOWNLOAD EBOOK

Genetic and Metabolic Engineering for Improved Biofuel Production from Lignocellulosic Biomass describes the different aspects of biofuel production from lignocellulosic biomass. Each chapter presents different technological approaches for cost effective liquid biofuel production from agroresidues/biomass. Two chapters cover future direction and the possibilities of biomass-based biofuel production at the industrial level. The book provides a genetic and metabolic engineering approach for improved cellulase production and the potential of strains that can ferment both pentose and hexose sugars. The book also gives direction on how to overcome challenges for the further advancement of lignocellulosic biomass-based biofuel production. - Covers genetic engineering approaches for higher cellulase production from fungi - Includes genetic and metabolic engineering approaches for development of potential pentose and hexose fermenting strain which can tolerate high ethanol and toxic phenolic compounds - Describe different bioreactors used in different steps of biomass-based biofuel production - Outlines future prospects and potential of biofuel production from lignocellulosic biomass


Systems Metabolic Engineering

Systems Metabolic Engineering

Author: Christoph Wittmann

Publisher: Springer Science & Business Media

Published: 2012-06-15

Total Pages: 391

ISBN-13: 9400745346

DOWNLOAD EBOOK

Systems Metabolic Engineering is changing the way microbial cell factories are designed and optimized for industrial production. Integrating systems biology and biotechnology with new concepts from synthetic biology enables the global analysis and engineering of microorganisms and bioprocesses at super efficiency and versatility otherwise not accessible. Without doubt, systems metabolic engineering is a major driver towards bio-based production of chemicals, materials and fuels from renewables and thus one of the core technologies of global green growth. In this book, Christoph Wittmann and Sang-Yup Lee have assembled the world leaders on systems metabolic engineering and cover the full story – from genomes and networks via discovery and design to industrial implementation practises. This book is a comprehensive resource for students and researchers from academia and industry interested in systems metabolic engineering. It provides us with the fundaments to targeted engineering of microbial cells for sustainable bio-production and stimulates those who are interested to enter this exiting research field.


The Metabolic Pathway Engineering Handbook

The Metabolic Pathway Engineering Handbook

Author: Christina Smolke

Publisher: CRC Press

Published: 2009-07-28

Total Pages: 570

ISBN-13: 142007766X

DOWNLOAD EBOOK

This second volume of the Metabolic Pathway Engineering Handbook delves into evolutionary tools and gene expression tools for metabolic pathway engineering. It covers applications of emerging technologies including recent research genome-wide technologies, DNA and phenotypic microarrays, and proteomics tools for experimentally determining flux thro


Industrialization of Biology

Industrialization of Biology

Author: National Research Council

Publisher: National Academies Press

Published: 2015-06-29

Total Pages: 158

ISBN-13: 0309316553

DOWNLOAD EBOOK

The tremendous progress in biology over the last half century - from Watson and Crick's elucidation of the structure of DNA to today's astonishing, rapid progress in the field of synthetic biology - has positioned us for significant innovation in chemical production. New bio-based chemicals, improved public health through improved drugs and diagnostics, and biofuels that reduce our dependency on oil are all results of research and innovation in the biological sciences. In the past decade, we have witnessed major advances made possible by biotechnology in areas such as rapid, low-cost DNA sequencing, metabolic engineering, and high-throughput screening. The manufacturing of chemicals using biological synthesis and engineering could expand even faster. A proactive strategy - implemented through the development of a technical roadmap similar to those that enabled sustained growth in the semiconductor industry and our explorations of space - is needed if we are to realize the widespread benefits of accelerating the industrialization of biology. Industrialization of Biology presents such a roadmap to achieve key technical milestones for chemical manufacturing through biological routes. This report examines the technical, economic, and societal factors that limit the adoption of bioprocessing in the chemical industry today and which, if surmounted, would markedly accelerate the advanced manufacturing of chemicals via industrial biotechnology. Working at the interface of synthetic chemistry, metabolic engineering, molecular biology, and synthetic biology, Industrialization of Biology identifies key technical goals for next-generation chemical manufacturing, then identifies the gaps in knowledge, tools, techniques, and systems required to meet those goals, and targets and timelines for achieving them. This report also considers the skills necessary to accomplish the roadmap goals, and what training opportunities are required to produce the cadre of skilled scientists and engineers needed.


Engineering of Microbial Biosynthetic Pathways

Engineering of Microbial Biosynthetic Pathways

Author: Vijai Singh

Publisher: Springer Nature

Published: 2020-07-16

Total Pages: 326

ISBN-13: 9811526044

DOWNLOAD EBOOK

This book provides a comprehensive overview of the basic and advanced metabolic engineering technologies used to generate natural metabolites and industrially important biomolecules. Metabolic engineering has the potential to produce large quantities of valuable biomolecules in a renewable and sustainable manner by extending or modifying biosynthetic pathways in a wide range of organisms. It has been successfully used to produce chemicals, drugs, enzymes, amino acids, antibiotics, biofuels, and industrially important pharmaceuticals. The book comprehensively reviews the various metabolites detection, extraction and biosensors and the metabolic engineering of microbial strains for the production of industrially useful enzymes, proteins, organic acids, vitamins and antibiotics, therapeutics, chemicals, and biofuels. It also discusses various genetic engineering and synthetic biology tools for metabolic engineering. In closing, the book discusses ethical, patenting and regulatory issues in the metabolic engineering of microbes. This book is a valuable source not only for beginners in metabolic engineering, but also students, researchers, biotechnology and metabolic engineering based company.


Genetically Engineered Crops

Genetically Engineered Crops

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2017-01-28

Total Pages: 607

ISBN-13: 0309437385

DOWNLOAD EBOOK

Genetically engineered (GE) crops were first introduced commercially in the 1990s. After two decades of production, some groups and individuals remain critical of the technology based on their concerns about possible adverse effects on human health, the environment, and ethical considerations. At the same time, others are concerned that the technology is not reaching its potential to improve human health and the environment because of stringent regulations and reduced public funding to develop products offering more benefits to society. While the debate about these and other questions related to the genetic engineering techniques of the first 20 years goes on, emerging genetic-engineering technologies are adding new complexities to the conversation. Genetically Engineered Crops builds on previous related Academies reports published between 1987 and 2010 by undertaking a retrospective examination of the purported positive and adverse effects of GE crops and to anticipate what emerging genetic-engineering technologies hold for the future. This report indicates where there are uncertainties about the economic, agronomic, health, safety, or other impacts of GE crops and food, and makes recommendations to fill gaps in safety assessments, increase regulatory clarity, and improve innovations in and access to GE technology.


Microbial Metabolic Engineering

Microbial Metabolic Engineering

Author: Christine Nicole S. Santos

Publisher: Humana Press

Published: 2019-02-21

Total Pages: 252

ISBN-13: 9781493991419

DOWNLOAD EBOOK

This volume covers a wide array of topics that will aid researchers in the task of engineering complex biological systems. This book is divided into three parts: Part One discusses the discovery and identification of relevant biosynthetic pathways for engineering; Part Two looks at the development of genetic tools for manipulating enzymes, biosynthetic pathways, and whole genomes; and Part Three covers the characterization of engineered microbes using targeted and global systems biology tools, as well as in silico models. Chapters explore topics such as leveraging enzyme promiscuity to construct novel biosynthetic pathways; assembling combinatorial multigene pathways for rapid strain optimization; applying 'omics technologies for identifying bottlenecks; and engineering nontraditional host organisms like cyanobacterium and Yarrowia lipolytica. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting edge and authoritative, Microbial Metabolic Engineering: Methods and Protocols is a valuable resource for researchers and scientists interested in engineering and optimizing microbes for a variety of biotechnological applications.