150 Years of Mathematics at Washington University in St. Louis

150 Years of Mathematics at Washington University in St. Louis

Author: Gary R. Jensen

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 162

ISBN-13: 082183603X

DOWNLOAD EBOOK

Articles in this book are based on talks given at the conference commemorating the 150th anniversary of the Washington University in St. Louis. The articles cover a wide range of important topics in mathematics, and are written by former and present faculty or graduates of the Washington University Department of Mathematics. The volume is prefaced by a brief history of the Washington University Department of Mathematics, a roster of those who received the PhD degree from the department, and a list of the Washington University Department of Mathematics faculty.


Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports

Author:

Publisher:

Published: 1970

Total Pages: 830

ISBN-13:

DOWNLOAD EBOOK

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.


Finite Groups

Finite Groups

Author: Daniel Gorenstein

Publisher: American Mathematical Soc.

Published: 2007

Total Pages: 546

ISBN-13: 0821843427

DOWNLOAD EBOOK

"The Classification Theorem is one of the main achievements of 20th century mathematics, but its proof has not yet been completely extricated from the journal literature in which it first appeared. This is the second volume in a series devoted to the presentation of a reorganized and simplified proof of the classification of the finite simple groups. The authors present (with either proof or reference to a proof) those theorems of abstract finite group theory, which are fundamental to the analysis in later volumes in the series. This volume provides a relatively concise and readable access to the key ideas and theorems underlying the study of finite simple groups and their important subgroups. The sections on semisimple subgroups and subgroups of parabolic type give detailed treatments of these important subgroups, including some results not available until now or available only in journal literature. The signalizer section provides an extensive development of both the Bender Method and the Signalizer Functor Method, which play a central role in the proof of the Classification Theorem. This book would be a valuable companion text for a graduate group theory course."--Publisher's website


Dirichlet Forms and Stochastic Processes

Dirichlet Forms and Stochastic Processes

Author: Zhi-Ming Ma

Publisher: Walter de Gruyter

Published: 1995

Total Pages: 362

ISBN-13: 9783110142846

DOWNLOAD EBOOK

The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.


Infinite Groups

Infinite Groups

Author: Martyn R. Dixon

Publisher: CRC Press

Published: 2022-12-30

Total Pages: 411

ISBN-13: 1000848310

DOWNLOAD EBOOK

In recent times, group theory has found wider applications in various fields of algebra and mathematics in general. But in order to apply this or that result, you need to know about it, and such results are often diffuse and difficult to locate, necessitating that readers construct an extended search through multiple monographs, articles, and papers. Such readers must wade through the morass of concepts and auxiliary statements that are needed to understand the desired results, while it is initially unclear which of them are really needed and which ones can be dispensed with. A further difficulty that one may encounter might be concerned with the form or language in which a given result is presented. For example, if someone knows the basics of group theory, but does not know the theory of representations, and a group theoretical result is formulated in the language of representation theory, then that person is faced with the problem of translating this result into the language with which they are familiar, etc. Infinite Groups: A Roadmap to Some Classical Areas seeks to overcome this challenge. The book covers a broad swath of the theory of infinite groups, without giving proofs, but with all the concepts and auxiliary results necessary for understanding such results. In other words, this book is an extended directory, or a guide, to some of the more established areas of infinite groups. Features An excellent resource for a subject formerly lacking an accessible and in-depth reference Suitable for graduate students, PhD students, and researchers working in group theory Introduces the reader to the most important methods, ideas, approaches, and constructions in infinite group theory.


The Theory of Infinite Soluble Groups

The Theory of Infinite Soluble Groups

Author: John C. Lennox

Publisher: Clarendon Press

Published: 2004-08-19

Total Pages: 360

ISBN-13: 0191523151

DOWNLOAD EBOOK

The central concept in this monograph is that of a soluble group - a group which is built up from abelian groups by repeatedly forming group extensions. It covers all the major areas, including finitely generated soluble groups, soluble groups of finite rank, modules over group rings, algorithmic problems, applications of cohomology, and finitely presented groups, whilst remaining fairly strictly within the boundaries of soluble group theory. An up-to-date survey of the area aimed at research students and academic algebraists and group theorists, it is a compendium of information that will be especially useful as a reference work for researchers in the field.