Fractional Calculus

Fractional Calculus

Author: Richard Herrmann

Publisher: World Scientific

Published: 2011

Total Pages: 274

ISBN-13: 9814340243

DOWNLOAD EBOOK

Fractional calculus is undergoing rapidly and ongoing development. We can already recognize, that within its framework new concepts and strategies emerge, which lead to new challenging insights and surprising correlations between different branches of physics. This book is an invitation both to the interested student and the professional researcher. It presents a thorough introduction to the basics of fractional calculus and guides the reader directly to the current state-of-the-art physical interpretation. It is also devoted to the application of fractional calculus on physical problems, in the subjects of classical mechanics, friction, damping, oscillations, group theory, quantum mechanics, nuclear physics, and hadron spectroscopy up to quantum field theory.


An Introduction to the Fractional Calculus and Fractional Differential Equations

An Introduction to the Fractional Calculus and Fractional Differential Equations

Author: Kenneth S. Miller

Publisher: Wiley-Interscience

Published: 1993-06-02

Total Pages: 384

ISBN-13: 9780471588849

DOWNLOAD EBOOK

Commences with the historical development of fractional calculus, its mathematical theory—particularly the Riemann-Liouville version. Numerous examples and theoretical applications of the theory are presented. Features topics associated with fractional differential equations. Discusses Weyl fractional calculus and some of its uses. Includes selected physical problems which lead to fractional differential or integral equations.


Fractional Derivatives for Physicists and Engineers

Fractional Derivatives for Physicists and Engineers

Author: Vladimir V. Uchaikin

Publisher: Springer Science & Business Media

Published: 2013-07-09

Total Pages: 400

ISBN-13: 3642339115

DOWNLOAD EBOOK

The first derivative of a particle coordinate means its velocity, the second means its acceleration, but what does a fractional order derivative mean? Where does it come from, how does it work, where does it lead to? The two-volume book written on high didactic level answers these questions. Fractional Derivatives for Physicists and Engineers— The first volume contains a clear introduction into such a modern branch of analysis as the fractional calculus. The second develops a wide panorama of applications of the fractional calculus to various physical problems. This book recovers new perspectives in front of the reader dealing with turbulence and semiconductors, plasma and thermodynamics, mechanics and quantum optics, nanophysics and astrophysics. The book is addressed to students, engineers and physicists, specialists in theory of probability and statistics, in mathematical modeling and numerical simulations, to everybody who doesn't wish to stay apart from the new mathematical methods becoming more and more popular. Prof. Vladimir V. UCHAIKIN is a known Russian scientist and pedagogue, a Honored Worker of Russian High School, a member of the Russian Academy of Natural Sciences. He is the author of about three hundreds articles and more than a dozen books (mostly in Russian) in Cosmic ray physics, Mathematical physics, Levy stable statistics, Monte Carlo methods with applications to anomalous processes in complex systems of various levels: from quantum dots to the Milky Way galaxy.


Advances in Fractional Calculus

Advances in Fractional Calculus

Author: J. Sabatier

Publisher: Springer Science & Business Media

Published: 2007-07-28

Total Pages: 550

ISBN-13: 1402060424

DOWNLOAD EBOOK

In the last two decades, fractional (or non integer) differentiation has played a very important role in various fields such as mechanics, electricity, chemistry, biology, economics, control theory and signal and image processing. For example, in the last three fields, some important considerations such as modelling, curve fitting, filtering, pattern recognition, edge detection, identification, stability, controllability, observability and robustness are now linked to long-range dependence phenomena. Similar progress has been made in other fields listed here. The scope of the book is thus to present the state of the art in the study of fractional systems and the application of fractional differentiation. As this volume covers recent applications of fractional calculus, it will be of interest to engineers, scientists, and applied mathematicians.


Fractional Calculus in Medical and Health Science

Fractional Calculus in Medical and Health Science

Author: Devendra Kumar

Publisher: CRC Press

Published: 2020-07-09

Total Pages: 265

ISBN-13: 1000081818

DOWNLOAD EBOOK

This book covers applications of fractional calculus used for medical and health science. It offers a collection of research articles built into chapters on classical and modern dynamical systems formulated by fractional differential equations describing human diseases and how to control them. The mathematical results included in the book will be helpful to mathematicians and doctors by enabling them to explain real-life problems accurately. The book will also offer case studies of real-life situations with an emphasis on describing the mathematical results and showing how to apply the results to medical and health science, and at the same time highlighting modeling strategies. The book will be useful to graduate level students, educators and researchers interested in mathematics and medical science.


Generalized Fractional Calculus and Applications

Generalized Fractional Calculus and Applications

Author: Virginia S Kiryakova

Publisher: CRC Press

Published: 1993-12-27

Total Pages: 412

ISBN-13: 9780582219779

DOWNLOAD EBOOK

In this volume various applications are discussed, in particular to the hyper-Bessel differential operators and equations, Dzrbashjan-Gelfond-Leontiev operators and Borel type transforms, convolutions, new representations of hypergeometric functions, solutions to classes of differential and integral equations, transmutation method, and generalized integral transforms. Some open problems are also posed. This book is intended for graduate and post-graduate students, lecturers, researchers and others working in applied mathematical analysis, mathematical physics and related disciplines.


Applications Of Fractional Calculus In Physics

Applications Of Fractional Calculus In Physics

Author: Rudolf Hilfer

Publisher: World Scientific

Published: 2000-03-02

Total Pages: 473

ISBN-13: 9814496200

DOWNLOAD EBOOK

Fractional calculus is a collection of relatively little-known mathematical results concerning generalizations of differentiation and integration to noninteger orders. While these results have been accumulated over centuries in various branches of mathematics, they have until recently found little appreciation or application in physics and other mathematically oriented sciences. This situation is beginning to change, and there are now a growing number of research areas in physics which employ fractional calculus.This volume provides an introduction to fractional calculus for physicists, and collects easily accessible review articles surveying those areas of physics in which applications of fractional calculus have recently become prominent.


Introduction To The Fractional Calculus Of Variations

Introduction To The Fractional Calculus Of Variations

Author: Delfim F M Torres

Publisher: World Scientific Publishing Company

Published: 2012-09-14

Total Pages: 292

ISBN-13: 184816968X

DOWNLOAD EBOOK

This invaluable book provides a broad introduction to the fascinating and beautiful subject of Fractional Calculus of Variations (FCV). In 1996, FVC evolved in order to better describe non-conservative systems in mechanics. The inclusion of non-conservatism is extremely important from the point of view of applications. Forces that do not store energy are always present in real systems. They remove energy from the systems and, as a consequence, Noether's conservation laws cease to be valid. However, it is still possible to obtain the validity of Noether's principle using FCV. The new theory provides a more realistic approach to physics, allowing us to consider non-conservative systems in a natural way. The authors prove the necessary Euler-Lagrange conditions and corresponding Noether theorems for several types of fractional variational problems, with and without constraints, using Lagrangian and Hamiltonian formalisms. Sufficient optimality conditions are also obtained under convexity, and Leitmann's direct method is discussed within the framework of FCV.The book is self-contained and unified in presentation. It may be used as an advanced textbook by graduate students and ambitious undergraduates in mathematics and mechanics. It provides an opportunity for an introduction to FCV for experienced researchers. The explanations in the book are detailed, in order to capture the interest of the curious reader, and the book provides the necessary background material required to go further into the subject and explore the rich research literature./a


Fractional Calculus View of Complexity

Fractional Calculus View of Complexity

Author: Bruce J. West

Publisher: CRC Press

Published: 2016-01-05

Total Pages: 303

ISBN-13: 149873801X

DOWNLOAD EBOOK

This book is not a text devoted to a pedagogical presentation of a specialized topic nor is it a monograph focused on the author's area of research. It accomplishes both these things while providing a rationale for why the reader ought to be interested in learning about fractional calculus. This book is for researchers who has heard about many