The Financial Times Handbook of Financial Engineering clearly explains the tools of financial engineering, showing you the formulas behind the tools, illustrating how they are applied, priced and hedged. All applications in this book are illustrated with fully-worked practical examples, and recommended tactics and techniques are tested using recent data.
Principles of Financial Engineering, Third Edition, is a highly acclaimed text on the fast-paced and complex subject of financial engineering. This updated edition describes the "engineering" elements of financial engineering instead of the mathematics underlying it. It shows how to use financial tools to accomplish a goal rather than describing the tools themselves. It lays emphasis on the engineering aspects of derivatives (how to create them) rather than their pricing (how they act) in relation to other instruments, the financial markets, and financial market practices. This volume explains ways to create financial tools and how the tools work together to achieve specific goals. Applications are illustrated using real-world examples. It presents three new chapters on financial engineering in topics ranging from commodity markets to financial engineering applications in hedge fund strategies, correlation swaps, structural models of default, capital structure arbitrage, contingent convertibles, and how to incorporate counterparty risk into derivatives pricing. Poised midway between intuition, actual events, and financial mathematics, this book can be used to solve problems in risk management, taxation, regulation, and above all, pricing. A solutions manual enhances the text by presenting additional cases and solutions to exercises. This latest edition of Principles of Financial Engineering is ideal for financial engineers, quantitative analysts in banks and investment houses, and other financial industry professionals. It is also highly recommended to graduate students in financial engineering and financial mathematics programs. - The Third Edition presents three new chapters on financial engineering in commodity markets, financial engineering applications in hedge fund strategies, correlation swaps, structural models of default, capital structure arbitrage, contingent convertibles and how to incorporate counterparty risk into derivatives pricing, among other topics - Additions, clarifications, and illustrations throughout the volume show these instruments at work instead of explaining how they should act - The solutions manual enhances the text by presenting additional cases and solutions to exercises
Financial engineering is about using financial instruments to reduce or eliminate risk, or to restructure financial exposure to improve its characteristics. Written with a clear and concise style, it covers the tools of financial engineering, defines each instrument, describes the markets in which they are traded and explains how each product is priced and hedged.
This text provides a thorough treatment of futures, 'plain vanilla' options and swaps as well as the use of exotic derivatives and interest rate options for speculation and hedging. Pricing of options using numerical methods such as lattices (BOPM), Mone Carlo simulation and finite difference methods, in additon to solutions using continuous time mathematics, are also covered. Real options theory and its use in investment appraisal and in valuing internet and biotechnology companies provide cutting edge practical applications. Practical risk management issues are examined in depth. Alternative models for calculating Value at Risk (market risk) and credit risk provide the throretical basis for a practical and timely overview of these areas of regulatory policy. This book is designed for courses in derivatives and risk management taken by specialist MBA, MSc Finance students or final year undergraduates, either as a stand-alone text or as a follow-on to Investments: Spot and Derivatives Markets by the same authors. The authors adopt a real-world emphasis throughout, and include features such as: * topic boxes, worked examples and learning objectives * Financial Times and Wall Street Journal newspaper extracts and analysis of real world cases * supporting web site including Lecturer's Resource Pack and Student Centre with interactive Excel and GAUSS software
The Handbook of Financial Time Series gives an up-to-date overview of the field and covers all relevant topics both from a statistical and an econometrical point of view. There are many fine contributions, and a preamble by Nobel Prize winner Robert F. Engle.
The new edition of this influential textbook, geared towards graduate or advanced undergraduate students, teaches the statistics necessary for financial engineering. In doing so, it illustrates concepts using financial markets and economic data, R Labs with real-data exercises, and graphical and analytic methods for modeling and diagnosing modeling errors. These methods are critical because financial engineers now have access to enormous quantities of data. To make use of this data, the powerful methods in this book for working with quantitative information, particularly about volatility and risks, are essential. Strengths of this fully-revised edition include major additions to the R code and the advanced topics covered. Individual chapters cover, among other topics, multivariate distributions, copulas, Bayesian computations, risk management, and cointegration. Suggested prerequisites are basic knowledge of statistics and probability, matrices and linear algebra, and calculus. There is an appendix on probability, statistics and linear algebra. Practicing financial engineers will also find this book of interest.
From the reviews: "Paul Glasserman has written an astonishingly good book that bridges financial engineering and the Monte Carlo method. The book will appeal to graduate students, researchers, and most of all, practicing financial engineers [...] So often, financial engineering texts are very theoretical. This book is not." --Glyn Holton, Contingency Analysis
The pricing of derivative instruments has always been a highly complex and time-consuming activity. Advances in technology, however, have enabled much quicker and more accurate pricing through mathematical rather than analytical models. In this book, the author bridges the divide between finance and mathematics by applying this proven mathematical technique to the financial markets. Utilising practical examples, the author systematically describes the processes involved in a manner accessible to those without a deep understanding of mathematics. * Explains little understood techniques that will assist in the accurate more speedy pricing of options * Centres on the practical application of these useful techniques * Offers a detailed and comprehensive account of the methods involved and is the first to explore the application of these particular techniques to the financial markets
Aktienderivate gehören zu den populärsten Derivatprodukten, die von institutionellen Anlegern gehandelt werden. Ein Aktienderivat ist ein Future oder eine Option auf Aktien oder Aktienindices. Zu den traditionellen Aktienderivaten gehören Optionsscheine, Optionen, Futures und Aktienindexfutures. Das "Handbook of Equity" ist eine vollständige und umfassende Überarbeitung des ersten und einzigen Buches zu diesem Thema. Herausgegeben von führenden Köpfen der Branche - darunter Nobelpreisträger Fischer Black, John Braddock und Mark Rubenstein - enthält es wichtige neue Informationen zu Aktienindexfutures und -optionen und erweitert die mathematische Diskussion um das Black & Scholes-Modell. (11/99)