Global Physical Climatology

Global Physical Climatology

Author: Dennis L. Hartmann

Publisher: Academic Press

Published: 1994-07-06

Total Pages: 425

ISBN-13: 0080571638

DOWNLOAD EBOOK

Global Physical Climatology is an introductory text devoted to the fundamental physical principles and problems of climate sensitivity and change. Addressing some of the most critical issues in climatology, this text features incisive coverage of topics that are central to understanding orbital parameter theory for past climate changes, and for anthropogenic and natural causes of near-future changes--Key Features* Covers the physics of climate change* Examines the nature of the current climate and its previous changes* Explores the sensitivity of climate and the mechanisms by which humans are likely to produce near-future climate changes* Provides instructive end-of-chapter exercises and appendices


Atmosphere-Ocean Interaction

Atmosphere-Ocean Interaction

Author: Eric B. Kraus

Publisher: Oxford University Press

Published: 1994-11-10

Total Pages: 385

ISBN-13: 019536208X

DOWNLOAD EBOOK

With both the growing importance of integrating studies of air-sea interaction and the interest in the general problem of global warming, the appearance of the second edition of this popular text is especially welcome. Thoroughly updated and revised, the authors have retained the accessible, comprehensive expository style that distinguished the earlier edition. Topics include the state of matter near the interface, radiation, surface wind waves, turbulent transfer near the interface, the planetary boundary layer, atmospherically-forced perturbations in the oceans, and large-scale forcing by sea surface buoyancy fluxes. This book will be welcomed by students and professionals in meteorology, physical oceanography, physics and ocean engineering.


Climate-Ocean Interaction

Climate-Ocean Interaction

Author: M.E. Schlesinger

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 379

ISBN-13: 9400920938

DOWNLOAD EBOOK

Preface This book is the culmination of a workshop jointly organized by NATO and CEC on Climate-Ocean Interaction which was held at Lady Margaret Hall, Oxford University during 26-30 September 1988. The objective of the ARW was to assess the current status of research on climate-ocean interaction, with a major focus on the development of coupled atmosphere-ocean-ice models and their application in the study of past, present and possible future climates. This book contains 16 chapters divided into four parts: Introduction; Observations of the Climate of the Ocean; Modelling the Atmospheric, Oceanic and Sea Ice Components of the Climatic System; and Simulating the Variability of Climate on Short, Medium and Long Time Scales. A fifth part contains the reports of the five Working Groups on: Climate Observations, Modelling, ENSO Modelling and Prediction, Climate-Ocean Interaction on TIme Scales of Decades to Centuries, and Impact of Paleoclimatic Proxy Data on Climate Modelling. Preface ix Acknowledgements I thank Howard Cattle and Neil Wells for their guidance and assistance as members of the Workshop Organizing Committee. I particularly thank Michael Davey for all his efforts as Local Organizer to make the ARW a success. I also thank the staff of Lady Margaret Hall, Oxford University, for their help with the arrangements for the ARW.


The Mathematics of Models for Climatology and Environment

The Mathematics of Models for Climatology and Environment

Author: Jesus I. Diaz

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 486

ISBN-13: 3642606032

DOWNLOAD EBOOK

This book is the culmination of the NATO Advanced Study Institute on The Mathematics of Models for Climatology and Environment which was held at Puerto de la Cruz ,Tenerife, Spain during 11-21 January 1995. One of the main goals of the ASI was to establish a bridge between mathematical modellers on the one hand and physical oceanographers and climatologists on the other. The book is divided into fourth parts containing a total of 16 chapters: Parts I, II and III are devoted to general models and Part IV to models related to some local problems. Most of the mathematical models here considered involve systems of nonlinear partial differential equations. The mathemat ical treatment cover a large list of subjects: existence and uniqueness for well-possed problems, large time behaviour, stability, bifurcation,diagrams of equilibria, conditions for the occurrence of interfaces or free boundaries, numerical algorithms and its implementation, controllability of the problems, etc. I thank Jacques- Louis Lions and Cornelius Johannes van Duijn for their guidance and collaboration as co-directors of the AS!. I also thank J.F.Padial and G. Diaz for their help in the planning and conduct of the ASI as well as in the preparation of this book.