The Energy of Physics, Part I: Classical Mechanics and Thermodynamics provides students the opportunity to learn physics the way in which physicists understand the discipline. In contrast to standard textbooks, which introduce forces first, this text begins with classical mechanics using the concept of energy conservation. By inverting the standard order of presentation, the book enables students to understand and use calculus effectively, particularly toward applications in physics. Energy conservation is a constant theme throughout the text. Newton's laws are presented in terms of work and changes in kinetic energy, and forces are introduced as the derivative of potential energy, which is necessary for defining equilibrium conditions. A generalization of forces and Newton's laws then motivates the concepts of linear and angular momentum. The mode of presentation also allows thermodynamics to be incorporated throughout the text. The second edition includes a new chapter on fluids and new and additional practice problems for all chapters. The Energy of Physics, Part I gives students a better understanding of classical mechanics and provides a solid foundation for more advanced physics concepts and courses. The text is ideal for calculus-based physics courses for science and engineering majors.
This highly-regarded text provides a comprehensive introduction to modern particle physics. Extensively rewritten and updated, this 4th edition includes developments in elementary particle physics, as well as its connections with cosmology and astrophysics. As in previous editions, the balance between experiment and theory is continually emphasised. The stress is on the phenomenological approach and basic theoretical concepts rather than rigorous mathematical detail. Short descriptions are given of some of the key experiments in the field, and how they have influenced our thinking. Although most of the material is presented in the context of the Standard Model of quarks and leptons, the shortcomings of this model and new physics beyond its compass (such as supersymmetry, neutrino mass and oscillations, GUTs and superstrings) are also discussed. The text includes many problems and a detailed and annotated further reading list.
Although we take it for granted today, the concept of "energy" transformed nineteenth-century physics. In The Science of Energy, Crosbie Smith shows how a North British group of scientists and engineers, including James Joule, James Clerk Maxwell, William and James Thomson, Fleeming Jenkin, and P. G. Tait, developed energy physics to solve practical problems encountered by Scottish shipbuilders and marine engineers; to counter biblical revivalism and evolutionary materialism; and to rapidly enhance their own scientific credibility. Replacing the language and concepts of classical mechanics with terms such as "actual" and "potential" energy, the North British group conducted their revolution in physics so astutely and vigorously that the concept of "energy"—a valuable commodity in the early days of industrialization—became their intellectual property. Smith skillfully places this revolution in its scientific and cultural context, exploring the actual creation of scientific knowledge during one of the most significant episodes in the history of physics.
The Energy of Physics Part II: Electricity and Magnetism steps away from the traditional chronological organization of material and instead groups similar topics together, thus enabling students to better understand potentials and fields and the relationship between electricity and magnetism. In opening chapters, the concepts of potential and field are introduced in the context of the gravitational, electric, and magnetic interactions between point particles. Later chapters discuss the electric and magnetic fields and potentials of distributions of electric charge, the multipole expansions of these fields and potentials, and Maxwell's Equations. The final chapters focus on electric circuits, with particular emphasis on AC circuits, electromagnetic waves, and optics. Appendices provide additional support in applied mathematics, derivations of key equations, further discussion of select examples, and more. The second edition features extensive revisions to the majority of the chapters, new problems for all chapters, and updated material in the appendices. The Energy of Physics Part II builds on the energy-based approach to classical mechanics presented in Part I and has the similar goal of helping students develop their applied mathematics skills. The book can be used in any calculus-based introductory electricity and magnetism course, especially those in physical sciences, engineering, and mathematics.
"This introductory, algebra-based, two-semester college physics book is grounded with real-world examples, illustrations, and explanations to help students grasp key, fundamental physics concepts. ... This online, fully editable and customizable title includes learning objectives, concept questions, links to labs and simulations, and ample practice opportunities to solve traditional physics application problems."--Website of book.
By focusing on the conceptual issues faced by nineteenth century physicists, this book clarifies the status of field theory, the ether, and thermodynamics in the work of the period. A remarkably synthetic account of a difficult and fragmentary period in scientific development.
PHYSICS OF Solar Energy Science/Physics/Energy The definitive guide to the science of solar energy You hold in your hands the first, and only, truly comprehensive guide to the most abundant and most promising source of alternative energy—solar power. In recent years, all major countries in the world have been calling for an energy revolution. The renewable energy industry will drive a vigorous expansion of the global economy and create more “green” jobs. The use of fossil fuels to power our way of living is moving toward an inevitable end, with sources of coal, petroleum, and natural gas being fiercely depleted. Solar energy offers a ubiquitous, inexhaustible, clean, and highly efficient way of meeting the energy needs of the twenty-first century. This book is designed to give the reader a solid footing in the general and basic physics of solar energy, which will be the basis of research and development in new solar engineering technologies in the years to come. As solar technologies like solar cells, solar thermal power generators, solar water heaters, solar photochemistry applications, and solar space heating-cooling systems become more and more prominent, it has become essential that the next generation of energy experts—both in academia and industry—have a one-stop resource for learning the basics behind the science, applications, and technologies afforded by solar energy. This book fills that need by laying the groundwork for the projected rapid expansion of future solar projects.
A profound understanding of the physical laws underlying energy converters is a prerequisite for a sustainable use of our energy resources. The aim of this textbook is to provide a unified view on the different energy conversion processes ranging from power plants to solar cells. It offers an interdisciplinary introduction to energy sciences for senior undergraduate and graduate students from natural sciences and engineering. The central theme is the treatment of energy converters as open thermodynamical systems and the performance of efficiency analyses, based on the concept of exergy. Presents the physics behind the most important energy converters in a unified framework. Evaluates the performance of ideal and realistic energy converters in terms of energy and exergy efficiencies Provides basic concepts needed for a discussion of energy converters, such as chemical and applied thermodynamics, electrochemistry and solid state physics. About the Authors Katharina Krischer is a professor of physics at the Technische Universität München, Germany. She has taught lectures on energy sciences for undergraduate and graduate students for more than 10 years. Her research topics include the photo-electrochemical production of solar fuels. Konrad Schönleber is a researcher in the group of Prof. Krischer which he joined after graduating in physics from the Technische Universität München. His research interest focuses on light-driven semiconductor electrochemistry and its application for renewable energies.
Energy, Physics and the Environment provides a foundational quantitative account of energy and related environmental issues for university students in science who have a first-year preparation in Physics. The text discusses the numbers involved in the various dimensions of the overall energy issue in order to help the reader develop a quantitative grasp on them. This third edition book features an expanded section on uranium resources and the most updated data available. Energy, Physics and the Environment gives students the opportunity to study current energy supply concerns and the impact that energy supply shortage has on the environment.