The Alps, Carpathians and Dinarides form a complex, highly curved and strongly coupled orogenic system. Motions of the European and Adriatic plates gave birth to a number of 'oceans' and microplates that led to several distinct stages of collision. Although the Alps serve as a classical example of collisional orogens, it becomes clearer that substantial questions on their evolution can only be answered in the Carpathians and Dinarides. Our understanding of the geodynamic evolution of the Alpine-Dinaride-Carpathian System has substantially improved and will continue to develop; this is thanks to collaboration between eastern and western Europe, but also due to the application of new methods and the launch of research initiatives. The largely field-based contributions investigate the following subjects: pre-Alpine heritage and Alpine reactivation; Mesozoic palaeogeography and Alpine subduction and collision processes; extrusion tectonics from the Eastern Alps to the Carpathians and the Pannonian Basin; orogen-parallel and orogen-perpendicular extension; record of orogeny in foreland basins; tectonometamorphic evolution; and relations between the Alps, Apennines and Corsica.
This volume addresses the tectonic complexity and diversity of strike-slip restraining and releasing bends with 18 contributions divided into four thematic sections: a topical review of fault bends and their global distribution; bends, sedimentary basins and earthquake hazards; restraining bends, transpressional deformation and basement controls on development; releasing bends, transtensional deformation and fluid flow.
The Alps are an arched mountain chain stretching 1500 km between Vienna and Graz in Austria and Genova in Italy. They resulted from the collision of the African and Laurasian plates during Mesozoic and Tertiary times. The high standard of knowledge attained over the last 30 years by the working groups on "Alpine Metamorphism" is well known and helped considerably to recognize pre-Mesozoic elements in the Alps. In Part I of this book the subdivision of the major Alpine units and pre-Mesozoic pal inspastic reconstructions are covered before discussion of the pre-Mesozoic geology in Parts II, III and IV It is understood that the Mesozoic and later events overprinted pre-existing structures veiling the earlier history and the nature of protoliths. Although the Alpine overprint does not facilitate the recognition of older struc tures, pre-Mesozoic basement units were recognized during the first beginnings of geological observations in the Alps, about 200 years ago. Fifty percent of the Alpine domain is underlain by basement units that have been unconformably covered since Permian and Mesozoic times. This basement appears today in a complex pattern among the Alpine structures. The history of their discovery and explanation, parallel with a growing sophistication of research methods, are the subject of the introductory chapter of Part II.
Faults and their deeper level equivalents, shear zones, are localized regions of intense deformation within the Earth. They are recognized at all scales from micro to plate boundary, and are important examples of the nature of heterogeneous deformation in natural rocks. Faults and shear zones are significant as they profoundly influence the location, architecture and evolution of a broad range of geological phenomenao The topography and bathymetry of the Earth's surface is marked by mountain belts and sedimentary basins that are controlled by faults and shear zoneso In addition, faults and shear zones control fluid migration and transport including hydrothermal and hydrocarbon systems. Once faults and shear zones are established, they are often long-lived features prone to multiple reactivation over very large time-scales. This collection of papers addresses lithospheric deformation and the rheology of shear zones, together with processes of partitioning and the unravelling of fault and shear zone histories.