Effect of Grain Size on the Internal Fracturing of Polycrystalline Ice

Effect of Grain Size on the Internal Fracturing of Polycrystalline Ice

Author: David M. Cole

Publisher:

Published: 1986

Total Pages: 92

ISBN-13:

DOWNLOAD EBOOK

This work presents the results of a study to examine the effects of grain size of internal microfractures in polycrystalline ice. Laboratory-prepared specimens were tested under uniaxial, constant-load creep conditions at -5 C. Grain size ranged from 1.5 to 6.0 mm. This range of grain size, under an initial creep stress of 2.0 MPa, led to a significant change in the character of deformation. The finest-grained material displayed no internal cracking and typically experienced strains of 10 to the minus 2nd power at the minimum creep rate epsilon. The coarse-grained material experienced severe cracking and a drop in the strain at epsilon min to approximately 4x10 to the minus 3rd power. Extensive post-test optical analysis allowed estimation of the size distribution and number of microcracks in the tested material. These data led to the development of a relationship between the average crack size and the average grain size. Additionally, the crack size distribution, when normalized to the grain diameter, was very similar for all specimens tested. The results indicate that the average crack size is approximately one-half the average grain diameter over the stated grain size range. A dislocation pileup model is found to adequately predict the onset of internal cracking. The work employed acoustic emission techniques to monitor the fracturing rate occurred. Other topics covered in this report include creep behavior, crack healing, the effect of stress level on fracture size and the orientation of cracked grains. Theoretical aspects of the grain size effect on material behavior are also given.


Ice-Structure Interaction

Ice-Structure Interaction

Author: Stephen J. Jones

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 724

ISBN-13: 3642841007

DOWNLOAD EBOOK

IUTAM-IAHR Symposium on Ice-Structure Interaction Professor Bez Tabarrok, Chairman of the Canadian National Committee (CNC) of the International Union of Theoretical and Applied Mechanics (IUTAM) invited Professor Derek Muggeridge to organize a symposium on ice structure interaction. Dr. Muggeridge readily agreed and prepared a proposal that was endorsed by the CNC and presented to the General Assembly Meeting of IUTAM for their consideration. This Assembly gave its approval and provided the local organizing committee with the names of individuals who were willing to serve on the Scientific Committee. Dr. Muggeridge became chairman of this committee and Dr. Ian Jordaan became co-chairman of this committee as well as chairman of the local organizing committee. The symposium followed the very successful previous meeting, chaired by Professor P. Tryde in Copenhagen, by ten years. Both symposia uti lized Springer-Verlag to publish their proceedings. The Faculty of En gineering and Applied Science at Memorial University of Newfoundland were particul{lXly pleased to host this prestigious symposium as it marked the twentieth anniversary of its Ocean Engineering Research Centre.


IUTAM Symposium on Scaling Laws in Ice Mechanics and Ice Dynamics

IUTAM Symposium on Scaling Laws in Ice Mechanics and Ice Dynamics

Author: J.P. Dempsey

Publisher: Springer Science & Business Media

Published: 2013-04-18

Total Pages: 479

ISBN-13: 9401597359

DOWNLOAD EBOOK

This Volume constitutes the Proceedings of the IUTAM Symposium on 'Scaling Laws in Ice Mechanics and Ice Dynamics', held in Fairbanks, Alaska from 13th to 16th of June 2000. Ice mechanics deals with essentially intact ice: in this discipline, descriptions of the motion and deformation of Arctic/ Antarctic and river/lake ice call for the development of physically based constitutive and fracture models over an enormous range in scale: 0.01 m - 10 km. Ice dynamics, on the other hand, deals with the movement of broken ice: descriptions of an aggregate of ice floes call for accurate modeling of momentum transfer through the sea/ice system, again over an enormous range in scale: 1 km (floe scale) - 500 km (basin scale). For ice mechanics, the emphasis on lab-scale (0.01 - 0.5 m) research con trasts with applications at the scale of order 1 km (ice-structure interaction, icebreaking); many important upscaling questions remain to be explored.


Mechanics of Ice Failure

Mechanics of Ice Failure

Author: Ian Jordaan

Publisher: Cambridge University Press

Published: 2023-02-28

Total Pages: 246

ISBN-13: 1108689728

DOWNLOAD EBOOK

Featuring real-world examples and practical methodology, this rigorous text explores time dependence in the mechanics of ice. Emphasizing use of full scale data, and implementing risk-based design methods, mechanical theory is combined with design and modelling. Readers will gain understanding of fundamental concepts and modern advances of ice mechanics and ice failure processes, analysis of field data, and use of probabilistic design methods, with applications to the interaction of ships and offshore structures with thick ice features or icebergs. The book highlights the use of viscoelastic theory, including nonlinearity with stress and the effects of microstructural change, in the mechanics of ice failure and fracture. The methods of design focus on risk analysis, with emphasis on rational limit-state principles and safety. Full discussion of historical discoveries and modern advances – including Hans Island, Molikpak, and others – support up-to-date methods and models to make this an ideal resource for designers and researchers.


IUTAM Symposium on Physics and Mechanics of Sea Ice

IUTAM Symposium on Physics and Mechanics of Sea Ice

Author: Jukka Tuhkuri

Publisher: Springer Nature

Published: 2022-01-01

Total Pages: 333

ISBN-13: 3030804399

DOWNLOAD EBOOK

This book presents the results of the IUTAM Symposium on Physics and Mechanics of Sea Ice which brought together researchers who have made significant contributions in the study of sea ice. The topics include: Fracture of ice, Thermodynamics of sea ice ridges, Global and local ice loads on ships and marine structures, Computational ice engineering and ice mechanics; and Physical and engineering problems related to ice and waves.