Ultrarelativistic Heavy-Ion Collisions

Ultrarelativistic Heavy-Ion Collisions

Author: Ramona Vogt

Publisher: Elsevier

Published: 2007-06-04

Total Pages: 489

ISBN-13: 0080525369

DOWNLOAD EBOOK

This book is designed for advanced undergraduate and graduate students in high energy heavy-ion physics. It is relevant for students who will work on topics being explored at RHIC and the LHC. In the first part, the basic principles of these studies are covered including kinematics, cross sections (including the quark model and parton distribution functions), the geometry of nuclear collisions, thermodynamics, hydrodynamics and relevant aspects of lattice gauge theory at finite temperature. The second part covers some more specific probes of heavy-ion collisions at these energies: high mass thermal dileptons, quarkonium and hadronization. The second part also serves as extended examples of concepts learned in the previous part. Both parts contain examples in the text as well as exercises at the end of each chapter.- Designed for students and newcomers to the field- Focuses on hard probes and QCD- Covers all aspects of high energy heavy-ion physics- Includes worked example problems and exercises


Phenomenology of Ultra-relativistic Heavy-ion Collisions

Phenomenology of Ultra-relativistic Heavy-ion Collisions

Author:

Publisher: World Scientific

Published: 2010

Total Pages: 437

ISBN-13: 9814280682

DOWNLOAD EBOOK

An introduction to the main ideas used in the physics of ultra-realistic heavy-ion collisions, this book covers topics such as hot and dense matter and the formation of the quark-gluon plasma in present and future heavy-ion experiments


Phenomenology Of Ultra-relativistic Heavy-ion Collisions

Phenomenology Of Ultra-relativistic Heavy-ion Collisions

Author: Wojciech Florkowski

Publisher: World Scientific Publishing Company

Published: 2010-03-24

Total Pages: 437

ISBN-13: 9813107596

DOWNLOAD EBOOK

This book gives an introduction to main ideas used in the physics of ultra-relativistic heavy-ion collisions. The links between basic theoretical concepts (discussed gradually from the elementary to more advanced level) and the results of experiments are outlined, so that experimentalists may learn more about the foundations of the models used by them to fit and interpret the data, while theoreticians may learn more about how different theoretical ideas are used in practical applications. The main task of the book is to collect the available information and establish a uniform picture of ultra-relativistic heavy-ion collisions. The properties of hot and dense matter implied by this picture are discussed comprehensively. In particular, the issues concerning the formation of the quark-gluon plasma in present and future heavy-ion experiments are addressed.


Introduction to Relativistic Heavy Ion Collisions

Introduction to Relativistic Heavy Ion Collisions

Author: L. P. Csernai

Publisher:

Published: 1994-05-10

Total Pages: 336

ISBN-13:

DOWNLOAD EBOOK

Introduction to Relativistic Heavy Ion Collisions László P. Csernai University of Bergen, Norway Written for postgraduates and advanced undergraduates in physics, this clear and concise work covers a wide range of subjects from intermediate to ultra-relativistic energies, thus providing an introductory overview of heavy ion physics. The reader is introduced to essential principles in heavy ion physics through a variety of questions, with answers, of varying difficulty. This timely text is based on a series of well received lectures given by Professor L. Csernai at the University of Minnesota, and the University of Bergen, where the author is based.


Melting Hadrons, Boiling Quarks - From Hagedorn Temperature to Ultra-Relativistic Heavy-Ion Collisions at CERN

Melting Hadrons, Boiling Quarks - From Hagedorn Temperature to Ultra-Relativistic Heavy-Ion Collisions at CERN

Author: Johann Rafelski

Publisher: Springer

Published: 2015-10-21

Total Pages: 457

ISBN-13: 3319175459

DOWNLOAD EBOOK

This book shows how the study of multi-hadron production phenomena in the years after the founding of CERN culminated in Hagedorn's pioneering idea of limiting temperature, leading on to the discovery of the quark-gluon plasma -- announced, in February 2000 at CERN. Following the foreword by Herwig Schopper -- the Director General (1981-1988) of CERN at the key historical juncture -- the first part is a tribute to Rolf Hagedorn (1919-2003) and includes contributions by contemporary friends and colleagues, and those who were most touched by Hagedorn: Tamás Biró, Igor Dremin, Torleif Ericson, Marek Gaździcki, Mark Gorenstein, Hans Gutbrod, Maurice Jacob, István Montvay, Berndt Müller, Grazyna Odyniec, Emanuele Quercigh, Krzysztof Redlich, Helmut Satz, Luigi Sertorio, Ludwik Turko, and Gabriele Veneziano. The second and third parts retrace 20 years of developments that after discovery of the Hagedorn temperature in 1964 led to its recognition as the melting point of hadrons into boiling quarks, and to the rise of the experimental relativistic heavy ion collision program. These parts contain previously unpublished material authored by Hagedorn and Rafelski: conference retrospectives, research notes, workshop reports, in some instances abbreviated to avoid duplication of material, and rounded off with the editor's explanatory notes. About the editor: Johann Rafelski is a theoretical physicist working at The University of Arizona in Tucson, USA. Bor n in 1950 in Krakow, Poland, he received his Ph.D. with Walter Greiner in Frankfurt, Germany in 1973. Rafelski arrived at CERN in 1977, where in a joint effort with Hagedorn he contributed greatly to the establishment of the relativistic heavy ion collision, and quark-gluon plasma research fields. Moving on, with stops in Frankfurt and Cape Town, to Arizona, he invented and developed the strangeness quark flavor as the signature of quark-gluon plasma.


Hot and Dense Nuclear Matter

Hot and Dense Nuclear Matter

Author: Walter Greiner

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 874

ISBN-13: 1461525160

DOWNLOAD EBOOK

Ladies and Gentlemen, dear colleagues, Welcome in Bodrum to the NASion Hot and Dense Nuclear Matter! Welcome also to Mrs. Governor Dr. Lale AYTAMAN. We are very honored, that you, Governor of the Mugla-State, came here to greet us. We are particularly grateful to you that you offered help and assured us to do everything that we can enjoy two safe weeks in Bodrum, in this wonderful area of your country. I have chosen Bodrum as the place for our NASI because I like this historic region where many cultures meet (e. g. , Oriental and European (Greek, Roman) culture) and where you find numerous places which played a role in ancient science and in early Christianity- I mention Milet (Thales) and Ephesus (Apostle Paulus), both of which are close by. Our NASI will exhibit the most recent developments in high energy heavy ion physics. The meeting is both a school and a conference: A school, because there are very many advanced students, who frequently are themselves already top researchers, attending the lectures of distinguished scientists and leading researchers. It is also a conference because new material, new results of this exciting and wonderful field - our field - high energy heavy ion physics will be presented. It is the topic of hot and dense nuclear matter, which we are focusing on.


From E+e- To Heavy Ion Collisions - Proceedings Of The Xxx International Symposium On Multiparticle Dynamics

From E+e- To Heavy Ion Collisions - Proceedings Of The Xxx International Symposium On Multiparticle Dynamics

Author: Tamas Csorgo

Publisher: World Scientific

Published: 2001-06-01

Total Pages: 658

ISBN-13: 9814542644

DOWNLOAD EBOOK

This book covers various experimental and theoretical aspects of multiparticle production in high energy interactions from lepton-lepton, lepton-hadron, hadron-hadron, hadron-nucleus and heavy ion collisons. This is the first time that data from CERN LEP, FNAL, DESY, BNL AGS, CERN SPS and BNL RHIC have been collected in a single volume. Not only accelerator-induced reactions but also cosmic ray interactions of very high energy are discussed, and the up-to-date theoretical interpretations are summarized.