The Dirichlet Space and Related Function Spaces

The Dirichlet Space and Related Function Spaces

Author: Nicola Arcozzi

Publisher: American Mathematical Soc.

Published: 2019-09-03

Total Pages: 559

ISBN-13: 1470450828

DOWNLOAD EBOOK

The study of the classical Dirichlet space is one of the central topics on the intersection of the theory of holomorphic functions and functional analysis. It was introduced about100 years ago and continues to be an area of active current research. The theory is related to such important themes as multipliers, reproducing kernels, and Besov spaces, among others. The authors present the theory of the Dirichlet space and related spaces starting with classical results and including some quite recent achievements like Dirichlet-type spaces of functions in several complex variables and the corona problem. The first part of this book is an introduction to the function theory and operator theory of the classical Dirichlet space, a space of holomorphic functions on the unit disk defined by a smoothness criterion. The Dirichlet space is also a Hilbert space with a reproducing kernel, and is the model for the dyadic Dirichlet space, a sequence space defined on the dyadic tree. These various viewpoints are used to study a range of topics including the Pick property, multipliers, Carleson measures, boundary values, zero sets, interpolating sequences, the local Dirichlet integral, shift invariant subspaces, and Hankel forms. Recurring themes include analogies, sometimes weak and sometimes strong, with the classical Hardy space; and the analogy with the dyadic Dirichlet space. The final chapters of the book focus on Besov spaces of holomorphic functions on the complex unit ball, a class of Banach spaces generalizing the Dirichlet space. Additional techniques are developed to work with the nonisotropic complex geometry, including a useful invariant definition of local oscillation and a sophisticated variation on the dyadic Dirichlet space. Descriptions are obtained of multipliers, Carleson measures, interpolating sequences, and multiplier interpolating sequences; estimates are obtained to prove corona theorems.


Function Spaces and Potential Theory

Function Spaces and Potential Theory

Author: David R. Adams

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 372

ISBN-13: 3662032821

DOWNLOAD EBOOK

"..carefully and thoughtfully written and prepared with, in my opinion, just the right amount of detail included...will certainly be a primary source that I shall turn to." Proceedings of the Edinburgh Mathematical Society


Lectures on Analytic Function Spaces and their Applications

Lectures on Analytic Function Spaces and their Applications

Author: Javad Mashreghi

Publisher: Springer Nature

Published: 2023-11-14

Total Pages: 426

ISBN-13: 3031335724

DOWNLOAD EBOOK

The focus program on Analytic Function Spaces and their Applications took place at Fields Institute from July 1st to December 31st, 2021. Hilbert spaces of analytic functions form one of the pillars of complex analysis. These spaces have a rich structure and for more than a century have been studied by many prominent mathematicians. They have essential applications in other fields of mathematics and engineering. The most important Hilbert space of analytic functions is the Hardy class H2. However, its close cousins—the Bergman space A2, the Dirichlet space D, the model subspaces Kt, and the de Branges-Rovnyak spaces H(b)—have also garnered attention in recent decades. Leading experts on function spaces gathered and discussed new achievements and future venues of research on analytic function spaces, their operators, and their applications in other domains. With over 250 hours of lectures by prominent mathematicians, the program spanned a wide variety of topics. More explicitly, there were courses and workshops on Interpolation and Sampling, Riesz Bases, Frames and Signal Processing, Bounded Mean Oscillation, de Branges-Rovnyak Spaces, Blaschke Products and Inner Functions, and Convergence of Scattering Data and Non-linear Fourier Transform, among others. At the end of each week, there was a high-profile colloquium talk on the current topic. The program also contained two advanced courses on Schramm Loewner Evolution and Lattice Models and Reproducing Kernel Hilbert Space of Analytic Functions. This volume features the courses given on Hardy Spaces, Dirichlet Spaces, Bergman Spaces, Model Spaces, Operators on Function Spaces, Truncated Toeplitz Operators, Semigroups of weighted composition operators on spaces of holomorphic functions, the Corona Problem, Non-commutative Function Theory, and Drury-Arveson Space. This volume is a valuable resource for researchers interested in analytic function spaces.


A Primer on the Dirichlet Space

A Primer on the Dirichlet Space

Author: Omar El-Fallah

Publisher: Cambridge University Press

Published: 2014-01-16

Total Pages: 227

ISBN-13: 1107729777

DOWNLOAD EBOOK

The Dirichlet space is one of the three fundamental Hilbert spaces of holomorphic functions on the unit disk. It boasts a rich and beautiful theory, yet at the same time remains a source of challenging open problems and a subject of active mathematical research. This book is the first systematic account of the Dirichlet space, assembling results previously only found in scattered research articles, and improving upon many of the proofs. Topics treated include: the Douglas and Carleson formulas for the Dirichlet integral, reproducing kernels, boundary behaviour and capacity, zero sets and uniqueness sets, multipliers, interpolation, Carleson measures, composition operators, local Dirichlet spaces, shift-invariant subspaces, and cyclicity. Special features include a self-contained treatment of capacity, including the strong-type inequality. The book will be valuable to researchers in function theory, and with over 100 exercises it is also suitable for self-study by graduate students.


A Primer on the Dirichlet Space

A Primer on the Dirichlet Space

Author: Omar El-Fallah

Publisher: Cambridge University Press

Published: 2014-01-16

Total Pages: 227

ISBN-13: 1107047528

DOWNLOAD EBOOK

The first systematic account of the Dirichlet space, one of the most fundamental Hilbert spaces of analytic functions.


Recent Advances in Operator-Related Function Theory

Recent Advances in Operator-Related Function Theory

Author: Alec L. Matheson

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 230

ISBN-13: 082183925X

DOWNLOAD EBOOK

The articles in this book are based on talks at a conference devoted to interrelations between function theory and the theory of operators. The main theme of the book is the role of Alexandrov-Clark measures. Two of the articles provide the introduction to the theory of Alexandrov-Clark measures and to its applications in the spectral theory of linear operators. The remaining articles deal with recent results in specific directions related to the theme of the book.


Holomorphic Spaces

Holomorphic Spaces

Author: Sheldon Jay Axler

Publisher: Cambridge University Press

Published: 1998-05-28

Total Pages: 490

ISBN-13: 9780521631938

DOWNLOAD EBOOK

Expository articles describing the role Hardy spaces, Bergman spaces, Dirichlet spaces, and Hankel and Toeplitz operators play in modern analysis.


Maximal Function Methods for Sobolev Spaces

Maximal Function Methods for Sobolev Spaces

Author: Juha Kinnunen

Publisher: American Mathematical Soc.

Published: 2021-08-02

Total Pages: 354

ISBN-13: 1470465752

DOWNLOAD EBOOK

This book discusses advances in maximal function methods related to Poincaré and Sobolev inequalities, pointwise estimates and approximation for Sobolev functions, Hardy's inequalities, and partial differential equations. Capacities are needed for fine properties of Sobolev functions and characterization of Sobolev spaces with zero boundary values. The authors consider several uniform quantitative conditions that are self-improving, such as Hardy's inequalities, capacity density conditions, and reverse Hölder inequalities. They also study Muckenhoupt weight properties of distance functions and combine these with weighted norm inequalities; notions of dimension are then used to characterize density conditions and to give sufficient and necessary conditions for Hardy's inequalities. At the end of the book, the theory of weak solutions to the p p-Laplace equation and the use of maximal function techniques is this context are discussed. The book is directed to researchers and graduate students interested in applications of geometric and harmonic analysis in Sobolev spaces and partial differential equations.


Generalized Analytic Continuation

Generalized Analytic Continuation

Author: William T. Ross

Publisher: American Mathematical Soc.

Published: 2002

Total Pages: 165

ISBN-13: 0821831755

DOWNLOAD EBOOK

The theory of generalized analytic continuation studies continuations of meromorphic functions in situations where traditional theory says there is a natural boundary. This broader theory touches on a remarkable array of topics in classical analysis, as described in the book. The authors use the strong analogy with the summability of divergent series to motivate the subject. They are careful to cover the various types of continuations, attempting to unify them and suggesting some open questions. The book also addresses the role of such continuations in approximation theory and operator theory. The introductory overview provides a useful look at the history and context of the theory.