The Combination of Data-Driven Machine Learning Approaches and Prior Knowledge for Robust Medical Image Processing and Analysis

The Combination of Data-Driven Machine Learning Approaches and Prior Knowledge for Robust Medical Image Processing and Analysis

Author: Jinming Duan

Publisher: Frontiers Media SA

Published: 2024-06-11

Total Pages: 165

ISBN-13: 2832550193

DOWNLOAD EBOOK

With the availability of big image datasets and state-of-the-art computing hardware, data-driven machine learning approaches, particularly deep learning, have been used in numerous medical image (CT-scans, MRI, PET, SPECT, etc..) computing tasks, ranging from image reconstruction, super-resolution, segmentation, registration all the way to disease classification and survival prediction. However, training such high-precision approaches often require large amounts of data to be collected and labelled and high-capacity graphics processing units (GPUs) installed, which are resource intensive and hence not always practical. Other hurdles such as the generalization ability to unseen new data and difficulty to interpret and explain can prevent their deployment to those clinical applications which deem such abilities imperative.


Advances in Artificial Intelligence and Machine Learning Applications for the Imaging of Bone and Soft Tissue Tumors

Advances in Artificial Intelligence and Machine Learning Applications for the Imaging of Bone and Soft Tissue Tumors

Author: Brandon K. K. Fields

Publisher: Frontiers Media SA

Published: 2024-11-07

Total Pages: 119

ISBN-13: 2832556418

DOWNLOAD EBOOK

Increasing interest in the development and validation of quantitative imaging biomarkers for oncologic imaging has in recent years inspired a surge in the field of artificial intelligence and machine learning. Initial results showed promise in identifying potential markers of treatment response, malignant potential, and prognostic predictors, among others; however, while many of these early algorithms showed the optimistic ability to separate pathologic states on “in-house” datasets, it was often the case that these classifiers generalized poorly on external validation sets and thus were of limited utility in the clinical setting. This issue was additionally compounded by the frequent use of data filtering and feature selection techniques in many studies to further bolster the machine learning results in limited case scenarios, thereby biasing the overall fit and further reducing generalizability.


Automated Reasoning for Systems Biology and Medicine

Automated Reasoning for Systems Biology and Medicine

Author: Pietro Liò

Publisher: Springer

Published: 2019-06-11

Total Pages: 471

ISBN-13: 303017297X

DOWNLOAD EBOOK

This book presents outstanding contributions in an exciting, new and multidisciplinary research area: the application of formal, automated reasoning techniques to analyse complex models in systems biology and systems medicine. Automated reasoning is a field of computer science devoted to the development of algorithms that yield trustworthy answers, providing a basis of sound logical reasoning. For example, in the semiconductor industry formal verification is instrumental to ensuring that chip designs are free of defects (or “bugs”). Over the past 15 years, systems biology and systems medicine have been introduced in an attempt to understand the enormous complexity of life from a computational point of view. This has generated a wealth of new knowledge in the form of computational models, whose staggering complexity makes manual analysis methods infeasible. Sound, trusted, and automated means of analysing the models are thus required in order to be able to trust their conclusions. Above all, this is crucial to engineering safe biomedical devices and to reducing our reliance on wet-lab experiments and clinical trials, which will in turn produce lower economic and societal costs. Some examples of the questions addressed here include: Can we automatically adjust medications for patients with multiple chronic conditions? Can we verify that an artificial pancreas system delivers insulin in a way that ensures Type 1 diabetic patients never suffer from hyperglycaemia or hypoglycaemia? And lastly, can we predict what kind of mutations a cancer cell is likely to undergo? This book brings together leading researchers from a number of highly interdisciplinary areas, including: · Parameter inference from time series · Model selection · Network structure identification · Machine learning · Systems medicine · Hypothesis generation from experimental data · Systems biology, systems medicine, and digital pathology · Verification of biomedical devices “This book presents a comprehensive spectrum of model-focused analysis techniques for biological systems ...an essential resource for tracking the developments of a fast moving field that promises to revolutionize biology and medicine by the automated analysis of models and data.”Prof Luca Cardelli FRS, University of Oxford


Deep Learning for Medical Image Analysis

Deep Learning for Medical Image Analysis

Author: S. Kevin Zhou

Publisher: Academic Press

Published: 2023-11-23

Total Pages: 544

ISBN-13: 0323858880

DOWNLOAD EBOOK

Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis.· Covers common research problems in medical image analysis and their challenges · Describes the latest deep learning methods and the theories behind approaches for medical image analysis · Teaches how algorithms are applied to a broad range of application areas including cardiac, neural and functional, colonoscopy, OCTA applications and model assessment · Includes a Foreword written by Nicholas Ayache


Deep Learning in Medical Image Analysis

Deep Learning in Medical Image Analysis

Author: Gobert Lee

Publisher: Springer Nature

Published: 2020-02-06

Total Pages: 184

ISBN-13: 3030331288

DOWNLOAD EBOOK

This book presents cutting-edge research and applications of deep learning in a broad range of medical imaging scenarios, such as computer-aided diagnosis, image segmentation, tissue recognition and classification, and other areas of medical and healthcare problems. Each of its chapters covers a topic in depth, ranging from medical image synthesis and techniques for muskuloskeletal analysis to diagnostic tools for breast lesions on digital mammograms and glaucoma on retinal fundus images. It also provides an overview of deep learning in medical image analysis and highlights issues and challenges encountered by researchers and clinicians, surveying and discussing practical approaches in general and in the context of specific problems. Academics, clinical and industry researchers, as well as young researchers and graduate students in medical imaging, computer-aided-diagnosis, biomedical engineering and computer vision will find this book a great reference and very useful learning resource.


Artificial Intelligence in Medical Imaging

Artificial Intelligence in Medical Imaging

Author: Erik R. Ranschaert

Publisher: Springer

Published: 2019-01-29

Total Pages: 369

ISBN-13: 3319948784

DOWNLOAD EBOOK

This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.


Soft Computing Based Medical Image Analysis

Soft Computing Based Medical Image Analysis

Author: Nilanjan Dey

Publisher: Academic Press

Published: 2018-01-18

Total Pages: 292

ISBN-13: 0128131748

DOWNLOAD EBOOK

Soft Computing Based Medical Image Analysis presents the foremost techniques of soft computing in medical image analysis and processing. It includes image enhancement, segmentation, classification-based soft computing, and their application in diagnostic imaging, as well as an extensive background for the development of intelligent systems based on soft computing used in medical image analysis and processing. The book introduces the theory and concepts of digital image analysis and processing based on soft computing with real-world medical imaging applications. Comparative studies for soft computing based medical imaging techniques and traditional approaches in medicine are addressed, providing flexible and sophisticated application-oriented solutions. - Covers numerous soft computing approaches, including fuzzy logic, neural networks, evolutionary computing, rough sets and Swarm intelligence - Presents transverse research in soft computing formation from various engineering and industrial sectors in the medical domain - Highlights challenges and the future scope for soft computing based medical analysis and processing techniques


Radiomics-based Theranostics in Cancer Precision Medicine

Radiomics-based Theranostics in Cancer Precision Medicine

Author: Jiansong Ji

Publisher: Frontiers Media SA

Published: 2023-10-11

Total Pages: 124

ISBN-13: 2832535720

DOWNLOAD EBOOK

Over the past few decades, there have been many dramatic innovations in cancer diagnosis and treatment strategies. Medical imaging plays a pivotal role in the diagnosis and treatment of cancer. It provides a comprehensive assessment of the tumors and their environments. Multiple imaging modalities are used for theranostics including optical (fluorescence or bioluminescence), nuclear (PET or SPECT), ultrasound, photoacoustic, CT, and MR imaging techniques. Radiomics is an approach for high-throughput extraction of quantitative imaging features or textures from imaging to decode histopathology and create high-dimensional datasets for feature extraction. Therefore, Radiomics may provide quantitative and objective support for decisions surrounding cancer detection and treatment.


Machine Learning and Deep Learning in Efficacy Improvement of Healthcare Systems

Machine Learning and Deep Learning in Efficacy Improvement of Healthcare Systems

Author: Om Prakash Jena

Publisher: CRC Press

Published: 2022-05-18

Total Pages: 321

ISBN-13: 1000486826

DOWNLOAD EBOOK

The goal of medical informatics is to improve life expectancy, disease diagnosis and quality of life. Medical devices have revolutionized healthcare and have led to the modern age of machine learning, deep learning and Internet of Medical Things (IoMT) with their proliferation, mobility and agility. This book exposes different dimensions of applications for computational intelligence and explains its use in solving various biomedical and healthcare problems in the real world. This book describes the fundamental concepts of machine learning and deep learning techniques in a healthcare system. The aim of this book is to describe how deep learning methods are used to ensure high-quality data processing, medical image and signal analysis and improved healthcare applications. This book also explores different dimensions of computational intelligence applications and illustrates its use in the solution of assorted real-world biomedical and healthcare problems. Furthermore, it provides the healthcare sector with innovative advances in theory, analytical approaches, numerical simulation, statistical analysis, modelling, advanced deployment, case studies, analytical results, computational structuring and significant progress in the field of machine learning and deep learning in healthcare applications. FEATURES Explores different dimensions of computational intelligence applications and illustrates its use in the solution of assorted real-world biomedical and healthcare problems Provides guidance in developing intelligence-based diagnostic systems, efficient models and cost-effective machines Provides the latest research findings, solutions to the concerning issues and relevant theoretical frameworks in the area of machine learning and deep learning for healthcare systems Describes experiences and findings relating to protocol design, prototyping, experimental evaluation, real testbeds and empirical characterization of security and privacy interoperability issues in healthcare applications Explores and illustrates the current and future impacts of pandemics and mitigates risk in healthcare with advanced analytics This book is intended for students, researchers, professionals and policy makers working in the fields of public health and in the healthcare sector. Scientists and IT specialists will also find this book beneficial for research exposure and new ideas in the field of machine learning and deep learning.


4th European Conference of the International Federation for Medical and Biological Engineering 23 - 27 November 2008, Antwerp, Belgium

4th European Conference of the International Federation for Medical and Biological Engineering 23 - 27 November 2008, Antwerp, Belgium

Author: Jos van der Sloten

Publisher: Springer Science & Business Media

Published: 2009-02-04

Total Pages: 2944

ISBN-13: 3540892087

DOWNLOAD EBOOK

The 4th European Congress of the International Federation for Medical and Biological Federation was held in Antwerp, November 2008. The scientific discussion on the conference and in this conference proceedings include the following issues: Signal & Image Processing ICT Clinical Engineering and Applications Biomechanics and Fluid Biomechanics Biomaterials and Tissue Repair Innovations and Nanotechnology Modeling and Simulation Education and Professional