These notes describe a general procedure for calculating the Betti numbers of the projective quotient varieties that geometric invariant theory associates to reductive group actions on nonsingular complex projective varieties. These quotient varieties are interesting in particular because of their relevance to moduli problems in algebraic geometry. The author describes two different approaches to the problem. One is purely algebraic, while the other uses the methods of symplectic geometry and Morse theory, and involves extending classical Morse theory to certain degenerate functions.
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.
This is the second volume of the new subseries "Invariant Theory and Algebraic Transformation Groups". The aim of the survey by A. Bialynicki-Birula is to present the main trends and achievements of research in the theory of quotients by actions of algebraic groups. This theory contains geometric invariant theory with various applications to problems of moduli theory. The contribution by J. Carrell treats the subject of torus actions on algebraic varieties, giving a detailed exposition of many of the cohomological results one obtains from having a torus action with fixed points. Many examples, such as toric varieties and flag varieties, are discussed in detail. W.M. McGovern studies the actions of a semisimple Lie or algebraic group on its Lie algebra via the adjoint action and on itself via conjugation. His contribution focuses primarily on nilpotent orbits that have found the widest application to representation theory in the last thirty-five years.
The International Conference "Algebraic Geometry and Analytic Geometry, Tokyo 1990" was held at Tokyo Metropolitan University and the Tokyo Training Center of Daihyaku Mutual Life Insurance Co., from August 13 through August 17, 1990, under the co-sponsorship of the Mathematical Society of Japan. It was one of the satellite conferences of ICM90, Kyoto, and approximately 300 participants, including more than 100 from overseas, attended the conference. The academic program was divided into two parts, the morning sessions and the afternoon sessions. The morning sessions were held at Tokyo Metropolitan University, and two one-hour plenary lectures were delivered every day. The afternoon sessions at the Tokyo Training Center, intended for a more specialized audience, consisted of four separate subsessions: Arithemetic Geometry, Algebraic Geometry, Analytic Geometry I and Analytic Geometry II. This book contains papers which grew out of the talks at the conference. The committee in charge of the organization and program consisted of A. Fujiki, K. Kato, T. Katsura, Y. Kawamata, Y. Miyaoka, S. Mori, K. Saito, N. Sasakura, T. Suwa and K. Watanabe. We would like to take this opportunity to thank the many mathematicians and students who cooperated to make the conference possible, especially Professors T. Fukui, S. Ishii, Y. Kitaoka, M. Miyanishi, Y. Namikawa, T. Oda, F. Sakai and T. Shioda for their valuable advice and assistance in organizing this conference. Financial support was mainly provided by personal contributions from Professors M.
This volume is a collection of articles by speakers at the Poisson 2006 conference. The program for Poisson 2006 was an overlap of topics that included deformation quantization, generalized complex structures, differentiable stacks, normal forms, and group-valued moment maps and reduction.
This book collects together original research and survey articles highlighting the fertile interdisciplinary applications of convex lattice polytopes in modern mathematics. Covering a diverse range of topics, including algebraic geometry, mirror symmetry, symplectic geometry, discrete geometry, and algebraic combinatorics, the common theme is the study of lattice polytopes. These fascinating combinatorial objects are a cornerstone of toric geometry and continue to find rich and unforeseen applications throughout mathematics. The workshop Interactions with Lattice Polytopes assembled many top researchers at the Otto-von-Guericke-Universität Magdeburg in 2017 to discuss the role of lattice polytopes in their work, and many of their presented results are collected in this book. Intended to be accessible, these articles are suitable for researchers and graduate students interested in learning about some of the wide-ranging interactions of lattice polytopes in pure mathematics.
This book presents contributions of participants of a workshop held at the Centre de Recherches Mathematiques (CRM), University of Montreal. It can be viewed as a sequel to Mirror Symmetry I (1998), Mirror Symmetry II (1996), and Mirror Symmetry III (1999), copublished by the AMS and International Press. The volume presents a broad survey of many of the noteworthy developments that have taken place in string theory, geometry, and duality since the mid 1990s. Some of the topics emphasized include the following: Integrable models and supersymmetric gauge theories; theory of M- and D-branes and noncommutative geometry; duality between strings and gauge theories; and elliptic genera and automorphic forms. Several introductory articles present an overview of the geometric and physical aspects of mirror symmetry and of corresponding developments in symplectic geometry. The book provides an efficient way for a very broad audience of mathematicians and physicists to explore the frontiers of research into this rapidly expanding area.
The 12 lectures presented in Representation Theories and Algebraic Geometry focus on the very rich and powerful interplay between algebraic geometry and the representation theories of various modern mathematical structures, such as reductive groups, quantum groups, Hecke algebras, restricted Lie algebras, and their companions. This interplay has been extensively exploited during recent years, resulting in great progress in these representation theories. Conversely, a great stimulus has been given to the development of such geometric theories as D-modules, perverse sheafs and equivariant intersection cohomology. The range of topics covered is wide, from equivariant Chow groups, decomposition classes and Schubert varieties, multiplicity free actions, convolution algebras, standard monomial theory, and canonical bases, to annihilators of quantum Verma modules, modular representation theory of Lie algebras and combinatorics of representation categories of Harish-Chandra modules.