Math for Programmers

Math for Programmers

Author: Paul Orland

Publisher: Manning Publications

Published: 2021-01-12

Total Pages: 686

ISBN-13: 1617295353

DOWNLOAD EBOOK

In Math for Programmers you’ll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you’ll master the key Python libraries used to turn them into real-world software applications. Summary To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest programming fields. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code! About the book In Math for Programmers you’ll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you’ll master the key Python libraries used to turn them into real-world software applications. What's inside Vector geometry for computer graphics Matrices and linear transformations Core concepts from calculus Simulation and optimization Image and audio processing Machine learning algorithms for regression and classification About the reader For programmers with basic skills in algebra. About the author Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land. Table of Contents 1 Learning math with code PART I - VECTORS AND GRAPHICS 2 Drawing with 2D vectors 3 Ascending to the 3D world 4 Transforming vectors and graphics 5 Computing transformations with matrices 6 Generalizing to higher dimensions 7 Solving systems of linear equations PART 2 - CALCULUS AND PHYSICAL SIMULATION 8 Understanding rates of change 9 Simulating moving objects 10 Working with symbolic expressions 11 Simulating force fields 12 Optimizing a physical system 13 Analyzing sound waves with a Fourier series PART 3 - MACHINE LEARNING APPLICATIONS 14 Fitting functions to data 15 Classifying data with logistic regression 16 Training neural networks


Essential Mathematics for Games and Interactive Applications

Essential Mathematics for Games and Interactive Applications

Author: James M. Van Verth

Publisher: CRC Press

Published: 2008-05-19

Total Pages: 706

ISBN-13: 0123742978

DOWNLOAD EBOOK

Essential Mathematics for Games and Interactive Applications, 2nd edition presents the core mathematics necessary for sophisticated 3D graphics and interactive physical simulations. The book begins with linear algebra and matrix multiplication and expands on this foundation to cover such topics as color and lighting, interpolation, animation and basic game physics. Essential Mathematics focuses on the issues of 3D game development important to programmers and includes optimization guidance throughout. The new edition Windows code will now use Visual Studio.NET. There will also be DirectX support provided, along with OpenGL - due to its cross-platform nature. Programmers will find more concrete examples included in this edition, as well as additional information on tuning, optimization and robustness. The book has a companion CD-ROM with exercises and a test bank for the academic secondary market, and for main market: code examples built around a shared code base, including a math library covering all the topics presented in the book, a core vector/matrix math engine, and libraries to support basic 3D rendering and interaction.


Error Correcting Codes

Error Correcting Codes

Author: D J. Baylis

Publisher: Routledge

Published: 2018-05-11

Total Pages: 232

ISBN-13: 1351449842

DOWNLOAD EBOOK

Assuming little previous mathematical knowledge, Error Correcting Codes provides a sound introduction to key areas of the subject. Topics have been chosen for their importance and practical significance, which Baylis demonstrates in a rigorous but gentle mathematical style.Coverage includes optimal codes; linear and non-linear codes; general techniques of decoding errors and erasures; error detection; syndrome decoding, and much more. Error Correcting Codes contains not only straight maths, but also exercises on more investigational problem solving. Chapters on number theory and polynomial algebra are included to support linear codes and cyclic codes, and an extensive reminder of relevant topics in linear algebra is given. Exercises are placed within the main body of the text to encourage active participation by the reader, with comprehensive solutions provided.Error Correcting Codes will appeal to undergraduate students in pure and applied mathematical fields, software engineering, communications engineering, computer science and information technology, and to organizations with substantial research and development in those areas.


Programming Mathematics Using MATLAB

Programming Mathematics Using MATLAB

Author: Lisa A. Oberbroeckling

Publisher: Academic Press

Published: 2020-05-27

Total Pages: 0

ISBN-13: 9780128177990

DOWNLOAD EBOOK

Providing an alternative to engineering-focused resources in the area, Programming Mathematics Using MATLAB® introduces the basics of programming and of using MATLAB® by highlighting many mathematical examples. Emphasizing mathematical concepts through the visualization of programming throughout the book, this useful resource utilizes examples that may be familiar to math students (such as numerical integration) and others that may be new (such as fractals). Additionally, the text uniquely offers a variety of MATLAB® projects, all of which have been class-tested thoroughly, and which enable students to put MATLAB® programming into practice while expanding their comprehension of concepts such as Taylor polynomials and the Gram-Schmidt process. Programming Mathematics Using MATLAB® is appropriate for readers familiar with sophomore-level mathematics (vectors, matrices, multivariable calculus), and is useful for math courses focused on MATLAB® specifically and those focused on mathematical concepts which seek to utilize MATLAB® in the classroom.


A Programmer's Introduction to Mathematics

A Programmer's Introduction to Mathematics

Author: Jeremy Kun

Publisher:

Published: 2020-05-17

Total Pages: 400

ISBN-13:

DOWNLOAD EBOOK

A Programmer's Introduction to Mathematics uses your familiarity with ideas from programming and software to teach mathematics. You'll learn about the central objects and theorems of mathematics, including graphs, calculus, linear algebra, eigenvalues, optimization, and more. You'll also be immersed in the often unspoken cultural attitudes of mathematics, learning both how to read and write proofs while understanding why mathematics is the way it is. Between each technical chapter is an essay describing a different aspect of mathematical culture, and discussions of the insights and meta-insights that constitute mathematical intuition. As you learn, we'll use new mathematical ideas to create wondrous programs, from cryptographic schemes to neural networks to hyperbolic tessellations. Each chapter also contains a set of exercises that have you actively explore mathematical topics on your own. In short, this book will teach you to engage with mathematics. A Programmer's Introduction to Mathematics is written by Jeremy Kun, who has been writing about math and programming for 10 years on his blog "Math Intersect Programming." As of 2020, he works in datacenter optimization at Google.The second edition includes revisions to most chapters, some reorganized content and rewritten proofs, and the addition of three appendices.


Concrete Mathematics

Concrete Mathematics

Author: Ronald L. Graham

Publisher: Addison-Wesley Professional

Published: 1994-02-28

Total Pages: 811

ISBN-13: 0134389980

DOWNLOAD EBOOK

This book introduces the mathematics that supports advanced computer programming and the analysis of algorithms. The primary aim of its well-known authors is to provide a solid and relevant base of mathematical skills - the skills needed to solve complex problems, to evaluate horrendous sums, and to discover subtle patterns in data. It is an indispensable text and reference not only for computer scientists - the authors themselves rely heavily on it! - but for serious users of mathematics in virtually every discipline. Concrete Mathematics is a blending of CONtinuous and disCRETE mathematics. "More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems." The subject matter is primarily an expansion of the Mathematical Preliminaries section in Knuth's classic Art of Computer Programming, but the style of presentation is more leisurely, and individual topics are covered more deeply. Several new topics have been added, and the most significant ideas have been traced to their historical roots. The book includes more than 500 exercises, divided into six categories. Complete answers are provided for all exercises, except research problems, making the book particularly valuable for self-study. Major topics include: Sums Recurrences Integer functions Elementary number theory Binomial coefficients Generating functions Discrete probability Asymptotic methods This second edition includes important new material about mechanical summation. In response to the widespread use of the first edition as a reference book, the bibliography and index have also been expanded, and additional nontrivial improvements can be found on almost every page. Readers will appreciate the informal style of Concrete Mathematics. Particularly enjoyable are the marginal graffiti contributed by students who have taken courses based on this material. The authors want to convey not only the importance of the techniques presented, but some of the fun in learning and using them.


A First Course in Coding Theory

A First Course in Coding Theory

Author: Raymond Hill

Publisher: Oxford University Press

Published: 1986

Total Pages: 268

ISBN-13: 9780198538035

DOWNLOAD EBOOK

Algebraic coding theory is a new and rapidly developing subject, popular for its many practical applications and for its fascinatingly rich mathematical structure. This book provides an elementary yet rigorous introduction to the theory of error-correcting codes. Based on courses given by the author over several years to advanced undergraduates and first-year graduated students, this guide includes a large number of exercises, all with solutions, making the book highly suitable for individual study.


In Code

In Code

Author: Sarah Flannery

Publisher: Algonquin Books

Published: 2002-01-01

Total Pages: 364

ISBN-13: 9781565123779

DOWNLOAD EBOOK

Originally published in England and cowritten with her father, "In Code" is "a wonderfully moving story about the thrill of the mathematical chase" ("Nature") and "a paean to intellectual adventure" ("Times Educational Supplement"). A memoir in mathematics, it is all about how a girl next door became an award-winning mathematician. photo insert.


Mathematics and Programming for Machine Learning with R

Mathematics and Programming for Machine Learning with R

Author: William Claster

Publisher: CRC Press

Published: 2020-10-26

Total Pages: 431

ISBN-13: 1000196976

DOWNLOAD EBOOK

Based on the author’s experience in teaching data science for more than 10 years, Mathematics and Programming for Machine Learning with R: From the Ground Up reveals how machine learning algorithms do their magic and explains how these algorithms can be implemented in code. It is designed to provide readers with an understanding of the reasoning behind machine learning algorithms as well as how to program them. Written for novice programmers, the book progresses step-by-step, providing the coding skills needed to implement machine learning algorithms in R. The book begins with simple implementations and fundamental concepts of logic, sets, and probability before moving to the coverage of powerful deep learning algorithms. The first eight chapters deal with probability-based machine learning algorithms, and the last eight chapters deal with machine learning based on artificial neural networks. The first half of the book does not require mathematical sophistication, although familiarity with probability and statistics would be helpful. The second half assumes the reader is familiar with at least one semester of calculus. The text guides novice R programmers through algorithms and their application and along the way; the reader gains programming confidence in tackling advanced R programming challenges. Highlights of the book include: More than 400 exercises A strong emphasis on improving programming skills and guiding beginners to the implementation of full-fledged algorithms Coverage of fundamental computer and mathematical concepts including logic, sets, and probability In-depth explanations of machine learning algorithms