This book discusses the geology, hydrogeology, and water quality/geochemistry of karst systems in geologically young terrain, using the state of Florida as an example. Also discussed are sinkhole-development models; sinkhole risk; eogenetic karst features developed in rocks as young as 125,000 years and as old as 65 million years; and karst landscapes of Florida, including regional geology and geomorphology with important examples of karst features, such as springs, sinkholes, caves, and other karst landforms. The eogenetic karst of Florida is largely covered and this book extensively discusses the interactions of karst processes with sand- and clay-rich cover materials.
This book illustrates the diversity of hypogene speleogenetic processes and void-conduit patterns depending on variations of the geological environments by presenting regional and cave-specific case studies. The cases include both well-known and newly recognized hypogene karst regions and caves of the world. They all focus on geological, hydrogeological, geodynamical and evolutionary contexts of hypogene speleogenesis. The last decade has witnessed the boost in recognition of the possibility, global occurrence, and practical importance of hypogene karstification (speleogenesis), i.e. the development of solutional porosity and permeability by upwelling flow, independent of recharge from the overlying or immediately adjacent surface. Hypogene karst has been identified and documented in many regions where it was previously overlooked or misinterpreted. The book enriches the basis for generalization and categorization of hypogene karst and thus improves our ability to adequately model hypogene karstification and predict related porosity and permeability. It is a book which benefits every researcher, student, and practitioner dealing with karst.
The globally important nature of wetland ecosystems has led to their increased protection and restoration as well as their use in engineered systems. Underpinning the beneficial functions of wetlands are a unique suite of physical, chemical, and biological processes that regulate elemental cycling in soils and the water column. This book provides an in-depth coverage of these wetland biogeochemical processes related to the cycling of macroelements including carbon, nitrogen, phosphorus, and sulfur, secondary and trace elements, and toxic organic compounds. In this synthesis, the authors combine more than 100 years of experience studying wetlands and biogeochemistry to look inside the black box of elemental transformations in wetland ecosystems. This new edition is updated throughout to include more topics and provide an integrated view of the coupled nature of biogeochemical cycles in wetland systems. The influence of the elemental cycles is discussed at a range of scales in the context of environmental change including climate, sea level rise, and water quality. Frequent examples of key methods and major case studies are also included to help the reader extend the basic theories for application in their own system. Some of the major topics discussed are: Flooded soil and sediment characteristics Aerobic-anaerobic interfaces Redox chemistry in flooded soil and sediment systems Anaerobic microbial metabolism Plant adaptations to reducing conditions Regulators of organic matter decomposition and accretion Major nutrient sources and sinks Greenhouse gas production and emission Elemental flux processes Remediation of contaminated soils and sediments Coupled C-N-P-S processes Consequences of environmental change in wetlands# The book provides the foundation for a basic understanding of key biogeochemical processes and its applications to solve real world problems. It is detailed, but also assists the reader with box inserts, artfully designed diagrams, and summary tables all supported by numerous current references. This book is an excellent resource for senior undergraduates and graduate students studying ecosystem biogeochemistry with a focus in wetlands and aquatic systems.
This practical training guidebook makes an important contribution to karst hydrogeology. It presents supporting material for academic courses worldwide that include this and similar topics. It is an excellent sourcebook for students and other attendees of the International Karst School: Characterization and Engineering of Karst Aquifers, which opened in Trebinje, Bosnia & Herzegovina in 2014 and which will be organized every year in early summer. As opposed to more theoretical works, this is a catalog of possible engineering interventions in karst and their implications. Although the majority of readers will be professionals with geology/hydrogeology backgrounds, the language is not purely technical making it accessible to a wider audience. This means that the methodology, case studies and experiences presented will also benefit water managers working in karst environments.
Focusing specifically on the management of karst environments, this volume draws together the world’s leading karst experts to provide a vital source for the study and management of this unique physical setting. Although karst landscapes cover 12% of the Earth’s terrain and provide 25% of the world’s drinking water, the resource management of karst environments has only previously received indirect attention. Through a comprehensive approach, Karst Management focuses on engineering issues associated with surface karst such as quarries, dams, and agriculture, subsurface topics such as the management of groundwater, show caves, cave biota, and geo-archaeology projects. Chapters that focus on karst as an integrated system look at IUCN World Heritage sites, national parks, policy and regulation, measuring systematic disturbance, information management, and public environmental education. The text incorporates the most up-to-date research from leading karst scientists. This volume provides important perspectives for university students, educators, geoengineers, resource managers, and planners who are interested in or work with this unique physical landscape.
Offering a comprehensive and interdisciplinary approach to the study of biochemical cycling in estuaries, this text utilises numerous illustrations and an extensive literature base in order to impart the current state-of-the-art knowledge in the field.
This extensively revised, restructured, and updated edition continues to present an engaging and comprehensive introduction to the subject, exploring the world’s landforms from a broad systems perspective. It covers the basics of Earth surface forms and processes, while reflecting on the latest developments in the field. Fundamentals of Geomorphology begins with a consideration of the nature of geomorphology, process and form, history, and geomorphic systems, and moves on to discuss: structure: structural landforms associated with plate tectonics and those associated with volcanoes, impact craters, and folds, faults, and joints process and form: landforms resulting from, or influenced by, the exogenic agencies of weathering, running water, flowing ice and meltwater, ground ice and frost, the wind, and the sea; landforms developed on limestone; and landscape evolution, a discussion of ancient landforms, including palaeosurfaces, stagnant landscape features, and evolutionary aspects of landscape change. This third edition has been fully updated to include a clearer initial explanation of the nature of geomorphology, of land surface process and form, and of land-surface change over different timescales. The text has been restructured to incorporate information on geomorphic materials and processes at more suitable points in the book. Finally, historical geomorphology has been integrated throughout the text to reflect the importance of history in all aspects of geomorphology. Fundamentals of Geomorphology provides a stimulating and innovative perspective on the key topics and debates within the field of geomorphology. Written in an accessible and lively manner, it includes guides to further reading, chapter summaries, and an extensive glossary of key terms. The book is also illustrated throughout with over 200 informative diagrams and attractive photographs, all in colour.
There is a general consensus that for the next few decades at least, the Earth will continue its warming. This will inevitably bring about serious environmental problems. For human society, the most severe will be those related to alterations of the hydrological cycle, which is already heavily influenced by human activities. Climate change will directly affect groundwater recharge, groundwater quality and the freshwater-seawater interface. The variations of groundwater storage inevitably entail a variety of geomorphological and engineering effects. In the areas where water resources are likely to diminish, groundwater will be one of the main solutions to prevent drought. In spite of its paramount importance, the issue of 'Climate Change and Groundwater' has been neglected. This volume presents some of the current understanding of the topic.
This book presents a comprehensive overview and analysis of mangrove ecological processes, structure, and function at the local, biogeographic, and global scales and how these properties interact to provide key ecosystem services to society. The analysis is based on an international collaborative effort that focuses on regions and countries holding the largest mangrove resources and encompasses the major biogeographic and socio-economic settings of mangrove distribution. Given the economic and ecological importance of mangrove wetlands at the global scale, the chapters aim to integrate ecological and socio-economic perspectives on mangrove function and management using a system-level hierarchical analysis framework. The book explores the nexus between mangrove ecology and the capacity for ecosystem services, with an emphasis on thresholds, multiple stressors, and local conditions that determine this capacity. The interdisciplinary approach and illustrative study cases included in the book will provide valuable resources in data, information, and knowledge about the current status of one of the most productive coastal ecosystem in the world.