High Performance Computing in Structural Engineering

High Performance Computing in Structural Engineering

Author: Hojjat Adeli

Publisher: CRC Press

Published: 1998-11-30

Total Pages: 270

ISBN-13: 9780849320910

DOWNLOAD EBOOK

High-performance multiprocessor computers provide new and interesting opportunities to solve large-scale structural engineering problems. However, the development of new computational models and algorithms that exploit the unique architecture of these machines remains a challenge. High Performance Computing in Structural Engineering explores the use of supercomputers with vectorization and parallel processing capabilities in structural engineering applications. The book focuses on the optimization of large structures subjected to the complicated, implicit, and discontinuous constraints of commonly used design codes and presents robust parallel-algorithms for analysis of these structures. The authors apply the algorithms to and analyze the performance of minimum weight designs of large, steel space trusses and moment-resisting frames, with or without bracings, consisting of discrete standard shapes. They clearly show that adroit and judicious use of vectorization techniques can improved the speedup of an optimization algorithm, and that parallel processing can lead to even further speedup. With its review of the necessary background material, generous illustrations, and unique content, this is the definitive resource for the analysis and optimization of structure on shared-memory multiprocessor computers. By extension, High Performance Computing in Structural Engineering will prove equally valuable in distributed computing on a cluster of workstations


Principles of High-Performance Processor Design

Principles of High-Performance Processor Design

Author: Junichiro Makino

Publisher: Springer Nature

Published: 2021-08-20

Total Pages: 167

ISBN-13: 3030768716

DOWNLOAD EBOOK

This book describes how we can design and make efficient processors for high-performance computing, AI, and data science. Although there are many textbooks on the design of processors we do not have a widely accepted definition of the efficiency of a general-purpose computer architecture. Without a definition of the efficiency, it is difficult to make scientific approach to the processor design. In this book, a clear definition of efficiency is given and thus a scientific approach for processor design is made possible. In chapter 2, the history of the development of high-performance processor is overviewed, to discuss what quantity we can use to measure the efficiency of these processors. The proposed quantity is the ratio between the minimum possible energy consumption and the actual energy consumption for a given application using a given semiconductor technology. In chapter 3, whether or not this quantity can be used in practice is discussed, for many real-world applications. In chapter 4, general-purpose processors in the past and present are discussed from this viewpoint. In chapter 5, how we can actually design processors with near-optimal efficiencies is described, and in chapter 6 how we can program such processors. This book gives a new way to look at the field of the design of high-performance processors.


Introduction to High Performance Computing for Scientists and Engineers

Introduction to High Performance Computing for Scientists and Engineers

Author: Georg Hager

Publisher: CRC Press

Published: 2010-07-02

Total Pages: 350

ISBN-13: 1439811938

DOWNLOAD EBOOK

Written by high performance computing (HPC) experts, Introduction to High Performance Computing for Scientists and Engineers provides a solid introduction to current mainstream computer architecture, dominant parallel programming models, and useful optimization strategies for scientific HPC. From working in a scientific computing center, the author


High Performance Computing

High Performance Computing

Author: John Levesque

Publisher: CRC Press

Published: 2010-12-14

Total Pages: 244

ISBN-13: 1420077066

DOWNLOAD EBOOK

High Performance Computing: Programming and Applications presents techniques that address new performance issues in the programming of high performance computing (HPC) applications. Omitting tedious details, the book discusses hardware architecture concepts and programming techniques that are the most pertinent to application developers for achievi


The Architecture of High Performance Computers

The Architecture of High Performance Computers

Author: IBBETT

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 177

ISBN-13: 1475767153

DOWNLOAD EBOOK

Introduction 1. 1 Historical Developments 1 1. 2 Techniques for Improving Performance 2 1. 3 An Architectural Design Example 3 2 Instructions and Addresses 2. 1 Three-address Systems - The CDC 6600 and 7600 7 2. 2 Two-address Systems - The IBM System/360 and /370 10 2. 3 One-address Systems 12 2. 4 Zero-address Systems 15 2. 5 The MU5 Instruction Set 17 2. 6 Comparing Instruction Formats 22 3 Storage Hierarcbies 3. 1 Store Interleaving 26 3. 2 The Atlas Paging System 29 3. 3 IBM Cache Systems 33 3. 4 The MU5 Name Store 37 3. 5 Data Transfers in the MU5 Storage Hierarchy 44 4 Pipelines 4. 1 The MU5 Primary Operand Unit Pipeline 49 4. 2 Arithmetic Pipelines - The TI ASC 62 4. 3 The IBM System/360 Model 91 Common Data Bus 67 5 Instruction Buffering 5. 1 The IBM System/360 Model 195 Instruction Processor 72 5. 2 Instruction Buffering in CDC Computers 77 5. 3 The MU5 Instruction Buffer Unit 82 5. 4 The CRAY-1 Instruction Buffers 87 5. 5 Position of the Control Point 89 6 Parallel Functional Units 6. 1 The CDC 6600 Central Processor 95 6. 2 The CDC 7600 Central Processor 104 6. 3 Performance 110 6 • 4 The CRA Y-1 112 7 Vector Processors 7. 1 Vector Facilities in MU5 126 7. 2 String Operations in MU5 136 7. 3 The CDC Star-100 142 7. 4 The CDC CYBER 205 146 7.


High-Performance Computing Using FPGAs

High-Performance Computing Using FPGAs

Author: Wim Vanderbauwhede

Publisher: Springer Science & Business Media

Published: 2013-08-23

Total Pages: 798

ISBN-13: 1461417910

DOWNLOAD EBOOK

High-Performance Computing using FPGA covers the area of high performance reconfigurable computing (HPRC). This book provides an overview of architectures, tools and applications for High-Performance Reconfigurable Computing (HPRC). FPGAs offer very high I/O bandwidth and fine-grained, custom and flexible parallelism and with the ever-increasing computational needs coupled with the frequency/power wall, the increasing maturity and capabilities of FPGAs, and the advent of multicore processors which has caused the acceptance of parallel computational models. The Part on architectures will introduce different FPGA-based HPC platforms: attached co-processor HPRC architectures such as the CHREC’s Novo-G and EPCC’s Maxwell systems; tightly coupled HRPC architectures, e.g. the Convey hybrid-core computer; reconfigurably networked HPRC architectures, e.g. the QPACE system, and standalone HPRC architectures such as EPFL’s CONFETTI system. The Part on Tools will focus on high-level programming approaches for HPRC, with chapters on C-to-Gate tools (such as Impulse-C, AutoESL, Handel-C, MORA-C++); Graphical tools (MATLAB-Simulink, NI LabVIEW); Domain-specific languages, languages for heterogeneous computing(for example OpenCL, Microsoft’s Kiwi and Alchemy projects). The part on Applications will present case from several application domains where HPRC has been used successfully, such as Bioinformatics and Computational Biology; Financial Computing; Stencil computations; Information retrieval; Lattice QCD; Astrophysics simulations; Weather and climate modeling.


High Performance Cluster Computing

High Performance Cluster Computing

Author: Rajkumar Buyya

Publisher: Prentice Hall

Published: 1999

Total Pages: 904

ISBN-13:

DOWNLOAD EBOOK

An authoritative guide to today's revolution in "commodity supercomputing, " this book brings together more than 100 of the field's leading practitioners, providing a single source for up-to-the-minute information on virtually every key system issue associated with high-performance cluster computing.