The New Benchmark for Understanding the Latest Developments of Ion ChannelsIon channels control the electrical properties of neurons and cardiac cells, mediate the detection and response to sensory stimuli, and regulate the response to physical stimuli. They can often interact with the cellular environment due to their location at the surface of ce
Ion channels are membrane proteins that act as gated pathways for the movement of ions across cell membranes. They play essential roles in the physiology of all cells. In recent years, an ever-increasing number of human and animal diseases have been found to result from defects in ion channel function. Most of these diseases arise from mutations in the genes encoding ion channel proteins, and they are now referred to as the channelopathies. Ion Channels and Disease provides an informative and up-to-date account of our present understanding of ion channels and the molecular basis of ion channel diseases. It includes a basic introduction to the relevant aspects of molecular biology and biophysics and a brief description of the principal methods used to study channelopathies. For each channel, the relationship between its molecular structure and its functional properties is discussed and ways in which genetic mutations produce the disease phenotype are considered. This book is intended for research workers and clinicians, as well as graduates and advanced undergraduates. The text is clear and lively and assumes little knowledge, yet it takes the reader to frontiers of what is currently known about this most exciting and medically important area of physiology. - Introduces the relevant aspects of molecular biology and biophysics - Describes the principal methods used to study channelopathies - Considers single classes of ion channels with summaries of the physiological role, subunit composition, molecular structure and chromosomal location, plus the relationship between channel structure and function - Looks at those diseases associated with defective channel structures and regulation, including mutations affecting channel function and to what extent this change in channel function can account for the clinical phenotype
Gives newcomers to the field a foundation in ion channel properties Details up-to-date techniques used in the study of ion channels, including fluorescence spectroscopy, x-ray crystallography, and electrophysiology Links the physiology of ion channels to diseases, such as cardiovascular diseases and cystic fibrosis Includes case studies and a glossary
This book discusses voltage-gated ion channels and their importance in drug discovery and development. The book includes reviews of the channel genome, the physiological bases of targeting ion channels in disease, the unique technologies developed for ion channel drug discovery, and the increasingly important role of ion channel screening in cardiac risk assessment. It provides an important reference for research scientists and drug discovery companies.
The propagation of signals through the nervous system depends on rapid changes in electric potential across cell membranes. These changes are mediated by ion channels--macromolecular pores that facilitate the passage of specific ions (e.g., K+ or Na+) through cell membranes in response to various signals. Defects in ion channels can lead to diseases such as epilepsy. This laboratory manual provides state-of-the-art techniques for investigating ion channel properties and activity, particularly in the nervous system. Contributors present electrophysiological methods to examine single-channel activity in cultured cells, to study synaptic plasticity and circuit dynamics in brain slice preparations, and to perform whole-cell recordings in awake--and even freely moving--animals. The use of optogenetic tools to study synapses or small networks in organotypic slice cultures is also covered. Many of the experimental setups described can be adapted for other ion channels, cell types, or systems. The manual includes background on the structure, function, and regulation of different voltage- and ligand-gated ion channels. Therefore, it is a useful resource for all cell biologists and neuroscientists seeking to further understand the complex roles of ion channels in normal physiology and disease.
Ion channel dysfunction in humans leads to impairment of the excitable processes necessary for the normal function of several tissues, such as muscle and brain. It follows that an increasing number of human diseases have been associated with malfunctioning ion channels, many of which have a genetic component. This volume of Advances in Genetics presents a broad and comprehensive overview of the inherited channelopathies in humans, including clinical, genetic and molecular aspects of these conditions. Keeping true to the scope of the serial, novel genomic and modeling research approaches and a review of potential therapeutic approaches for each of these conditions are also incorporated.
The Textbook of Ion Channels is a set of three volumes providing a wide-ranging reference source on ion channels for students, instructors, and researchers. Ion channels are membrane proteins that control the electrical properties of neurons and cardiac cells, mediate the detection and response to sensory stimuli like light, sound, odor, and taste, and regulate the response to physical stimuli like temperature and pressure. In non-excitable tissues, ion channels are instrumental for the regulation of basic salt balance that is critical for homeostasis. Ion channels are located at the surface membrane of cells, giving them the unique ability to communicate with the environment, as well as the membrane of intracellular organelles, allowing them to regulate internal homeostasis. Ion channels are fundamentally important for human health and diseases, and are important targets for pharmaceuticals in mental illness, heart disease, anesthesia, pain and other clinical applications. The modern methods used in their study are powerful and diverse, ranging from single ion-channel measurement techniques to models of ion channel diseases in animals, and human clinical trials for ion channel drugs. All three volumes give the reader an introduction to fundamental concepts needed to understand the mechanism of ion channels, a guide to the technical aspects of ion channel research, offer a modern guide to the properties of major ion channel families, and include coverage of key examples of regulatory, physiological, and disease roles for ion channels.
Ion channels are crucial components of living cells. Situated in the cell's membranes. they allow particular ions to pass from one side of the membrane to the other. In recent years the patch clamp technique has allowed the activity of individual channels to be measured, and recombinant DNA technology has led to fascinating detail on their structure. Together, these technical advances have produced a great flowering of knowledge and understanding about the subject, itself leading to further breakthroughs in science and medicine. Ion Channels provides an introduction to this scientific endeavour. It emphasises the molecular structure of channels as determined by gene cloning technology. This knowledge illuminates discussions of the permeability and selectivity of channels, their gating and modulation, their responses to drugs and toxins and the human diseases caused when they do not function properly.
Volume 33 reviews the current understanding of ion channel regulation by signal transduction pathways. Ion channels are no longer viewed simply as the voltage-gated resistors of biophysicists or the ligand-gated receptors of biochemists. They have been transformed during the past 20 years into signaling proteins that regulate every aspect of cell physiology. In addition to the voltage-gated channels, which provide the ionic currents to generate and spread neuronal activity, and the calcium ions to trigger synaptic transmission, hormonal secretion, and muscle contraction, new gene families of ion channel proteins regulate cell migration, cell cycle progression, apoptosis, and gene transcription, as well as electrical excitability. Even the genome of the lowly roundworm Caenorhabditis elegans encodes almost 100 distinct genes for potassium-selective channels alone. Most of these new channel proteins are insensitive to membrane potential, yet in humans, mutations in these genes disrupt development and increase individual susceptibility to debilitating and lethal diseases.How do cells regulate the activity of these channels? How might we restore their normal function? In Ion Channel Regulation, many of the experts who pioneered these discoveries provide detailed summaries of our current understanding of the molecular mechanisms that control ion channel activity. - Reviews brain functioning at the fundamental, molecular level - Describes key systems that control signaling between and within cells - Explains how channels are used to stimulate growth and changes to activity of the nucleus and genome