Linear Factor Models in Finance

Linear Factor Models in Finance

Author: John Knight

Publisher: Elsevier

Published: 2004-12-01

Total Pages: 298

ISBN-13: 0080455328

DOWNLOAD EBOOK

The determination of the values of stocks, bonds, options, futures, and derivatives is done by the scientific process of asset pricing, which has developed dramatically in the last few years due to advances in financial theory and econometrics. This book covers the science of asset pricing by concentrating on the most widely used modelling technique called: Linear Factor Modelling.Linear Factor Models covers an important area for Quantitative Analysts/Investment Managers who are developing Quantitative Investment Strategies. Linear factor models (LFM) are part of modern investment processes that include asset valuation, portfolio theory and applications, linear factor models and applications, dynamic asset allocation strategies, portfolio performance measurement, risk management, international perspectives, and the use of derivatives. The book develops the building blocks for one of the most important theories of asset pricing - Linear Factor Modelling. Within this framework, we can include other asset pricing theories such as the Capital Asset Pricing Model (CAPM), arbitrage pricing theory and various pricing formulae for derivatives and option prices. As a bare minimum, the reader of this book must have a working knowledge of basic calculus, simple optimisation and elementary statistics. In particular, the reader must be comfortable with the algebraic manipulation of means, variances (and covariances) of linear combination(s) of random variables. Some topics may require a greater mathematical sophistication.* Covers the latest methods in this area.* Combines actual quantitative finance experience with analytical research rigour* Written by both quantitative analysts and academics who work in this area


Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes)

Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes)

Author: Cheng Few Lee

Publisher: World Scientific

Published: 2020-07-30

Total Pages: 5053

ISBN-13: 9811202400

DOWNLOAD EBOOK

This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts.In both theory and methodology, we need to rely upon mathematics, which includes linear algebra, geometry, differential equations, Stochastic differential equation (Ito calculus), optimization, constrained optimization, and others. These forms of mathematics have been used to derive capital market line, security market line (capital asset pricing model), option pricing model, portfolio analysis, and others.In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook.Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience.


Empirical Asset Pricing

Empirical Asset Pricing

Author: Wayne Ferson

Publisher: MIT Press

Published: 2019-03-12

Total Pages: 497

ISBN-13: 0262039370

DOWNLOAD EBOOK

An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.


Handbook of Financial Econometrics

Handbook of Financial Econometrics

Author: Yacine Ait-Sahalia

Publisher: Elsevier

Published: 2009-10-19

Total Pages: 809

ISBN-13: 0080929842

DOWNLOAD EBOOK

This collection of original articles—8 years in the making—shines a bright light on recent advances in financial econometrics. From a survey of mathematical and statistical tools for understanding nonlinear Markov processes to an exploration of the time-series evolution of the risk-return tradeoff for stock market investment, noted scholars Yacine Aït-Sahalia and Lars Peter Hansen benchmark the current state of knowledge while contributors build a framework for its growth. Whether in the presence of statistical uncertainty or the proven advantages and limitations of value at risk models, readers will discover that they can set few constraints on the value of this long-awaited volume. - Presents a broad survey of current research—from local characterizations of the Markov process dynamics to financial market trading activity - Contributors include Nobel Laureate Robert Engle and leading econometricians - Offers a clarity of method and explanation unavailable in other financial econometrics collections


High-Frequency Financial Econometrics

High-Frequency Financial Econometrics

Author: Yacine Aït-Sahalia

Publisher: Princeton University Press

Published: 2014-07-21

Total Pages: 683

ISBN-13: 0691161437

DOWNLOAD EBOOK

A comprehensive introduction to the statistical and econometric methods for analyzing high-frequency financial data High-frequency trading is an algorithm-based computerized trading practice that allows firms to trade stocks in milliseconds. Over the last fifteen years, the use of statistical and econometric methods for analyzing high-frequency financial data has grown exponentially. This growth has been driven by the increasing availability of such data, the technological advancements that make high-frequency trading strategies possible, and the need of practitioners to analyze these data. This comprehensive book introduces readers to these emerging methods and tools of analysis. Yacine Aït-Sahalia and Jean Jacod cover the mathematical foundations of stochastic processes, describe the primary characteristics of high-frequency financial data, and present the asymptotic concepts that their analysis relies on. Aït-Sahalia and Jacod also deal with estimation of the volatility portion of the model, including methods that are robust to market microstructure noise, and address estimation and testing questions involving the jump part of the model. As they demonstrate, the practical importance and relevance of jumps in financial data are universally recognized, but only recently have econometric methods become available to rigorously analyze jump processes. Aït-Sahalia and Jacod approach high-frequency econometrics with a distinct focus on the financial side of matters while maintaining technical rigor, which makes this book invaluable to researchers and practitioners alike.


Asset Pricing

Asset Pricing

Author: John H. Cochrane

Publisher: Princeton University Press

Published: 2009-04-11

Total Pages: 552

ISBN-13: 1400829135

DOWNLOAD EBOOK

Winner of the prestigious Paul A. Samuelson Award for scholarly writing on lifelong financial security, John Cochrane's Asset Pricing now appears in a revised edition that unifies and brings the science of asset pricing up to date for advanced students and professionals. Cochrane traces the pricing of all assets back to a single idea—price equals expected discounted payoff—that captures the macro-economic risks underlying each security's value. By using a single, stochastic discount factor rather than a separate set of tricks for each asset class, Cochrane builds a unified account of modern asset pricing. He presents applications to stocks, bonds, and options. Each model—consumption based, CAPM, multifactor, term structure, and option pricing—is derived as a different specification of the discounted factor. The discount factor framework also leads to a state-space geometry for mean-variance frontiers and asset pricing models. It puts payoffs in different states of nature on the axes rather than mean and variance of return, leading to a new and conveniently linear geometrical representation of asset pricing ideas. Cochrane approaches empirical work with the Generalized Method of Moments, which studies sample average prices and discounted payoffs to determine whether price does equal expected discounted payoff. He translates between the discount factor, GMM, and state-space language and the beta, mean-variance, and regression language common in empirical work and earlier theory. The book also includes a review of recent empirical work on return predictability, value and other puzzles in the cross section, and equity premium puzzles and their resolution. Written to be a summary for academics and professionals as well as a textbook, this book condenses and advances recent scholarship in financial economics.


Encyclopedia of Finance

Encyclopedia of Finance

Author: Cheng-Few Lee

Publisher: Springer Science & Business Media

Published: 2006-07-27

Total Pages: 861

ISBN-13: 0387262849

DOWNLOAD EBOOK

This is a major new reference work covering all aspects of finance. Coverage includes finance (financial management, security analysis, portfolio management, financial markets and instruments, insurance, real estate, options and futures, international finance) and statistical applications in finance (applications in portfolio analysis, option pricing models and financial research). The project is designed to attract both an academic and professional market. It also has an international approach to ensure its maximum appeal. The Editors' wish is that the readers will find the encyclopedia to be an invaluable resource.


Introduction to Econometrics

Introduction to Econometrics

Author: James H. Stock

Publisher: Prentice Hall

Published: 2015

Total Pages: 0

ISBN-13: 9780133486872

DOWNLOAD EBOOK

For courses in Introductory Econometrics Engaging applications bring the theory and practice of modern econometrics to life. Ensure students grasp the relevance of econometrics with Introduction to Econometrics-the text that connects modern theory and practice with motivating, engaging applications. The Third Edition Update maintains a focus on currency, while building on the philosophy that applications should drive the theory, not the other way around. This program provides a better teaching and learning experience-for you and your students. Here's how: Personalized learning with MyEconLab-recommendations to help students better prepare for class, quizzes, and exams-and ultimately achieve improved comprehension in the course. Keeping it current with new and updated discussions on topics of particular interest to today's students. Presenting consistency through theory that matches application. Offering a full array of pedagogical features. Note: You are purchasing a standalone product; MyEconLab does not come packaged with this content. If you would like to purchase both the physical text and MyEconLab search for ISBN-10: 0133595420 ISBN-13: 9780133595420. That package includes ISBN-10: 0133486877 /ISBN-13: 9780133486872 and ISBN-10: 0133487679/ ISBN-13: 9780133487671. MyEconLab is not a self-paced technology and should only be purchased when required by an instructor.


Parameter Estimation in Stochastic Volatility Models

Parameter Estimation in Stochastic Volatility Models

Author: Jaya P. N. Bishwal

Publisher: Springer Nature

Published: 2022-08-06

Total Pages: 634

ISBN-13: 3031038614

DOWNLOAD EBOOK

This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.