Structural Geology Algorithms

Structural Geology Algorithms

Author: Richard Waldron Allmendinger

Publisher:

Published: 2014-05-14

Total Pages: 302

ISBN-13: 9781139207416

DOWNLOAD EBOOK

"Structural Geology has been taught, largely unchanged, for the last 50 years or more. The lecture part of most courses introduces students to concepts such as stress and strain, as well as more descriptive material like fault and fold terminology. The lab part of the course usually focuses on practical problem solving, mostly traditional me-thods for describing quantitatively the geometry of structures. While the lecture may introduce advanced concepts such as tensors, the lab commonly trains the student to use a combination of graphical methods like orthographic or spherical projection, as well as a variety of plane trigonometry solutions to various problems. This leads to a disconnect between lecture concepts that require a very precise understanding of coor-dinate systems (e.g., tensors) and lab methods that appear to have no common spatial or mathematical foundation. Students have no chance to understand that, for example, seemingly unconnected constructions like down-plunge projections and Mohr circles share a common mathematical heritage: they are both graphical representations of coordinate transformations"--Provided by publisher.


Theoretical Global Seismology

Theoretical Global Seismology

Author: F. A. Dahlen

Publisher: Princeton University Press

Published: 2020-08-04

Total Pages: 1040

ISBN-13: 0691216150

DOWNLOAD EBOOK

After every major earthquake, the Earth rings like a bell for several days. These free oscillations of the Earth and the related propagating body and surface waves are routinely detected at broad-band seismographic stations around the world. In this book, F. A. Dahlen and Jeroen Tromp present an advanced theoretical treatment of global seismology, describing the normal-mode, body-wave, and surface-wave methods employed in the determination of the Earth's three-dimensional internal structure and the source mechanisms of earthquakes. The authors provide a survey of both the history of global seismological research and the major theoretical and observational advances made in the past decade. The book is divided into three parts. In the first, "Foundations," Dahlen and Tromp give an extensive introduction to continuum mechanics and discuss the representation of seismic sources and the free oscillations of a completely general Earth model. The resulting theory should provide the basis for future scientific discussions of the elastic-gravitational deformation of the Earth. The second part, "The Spherical Earth," is devoted to the free oscillations of a spherically symmetric Earth. In the third part, "The Aspherical Earth," the authors discuss methods of dealing with the Earth's three-dimensional heterogeneity. The book is concerned primarily with the forward problem of global seismology--detailing how synthetic seismograms and spectra may be calculated and interpreted. As a long-needed unification of theories in global seismology, the book will be important to graduate students and to professional seismologists, geodynamicists, and geomagnetists, as well as to astronomers who study the free oscillations of the Sun and other stars.


Fluid Mechanics of the Atmosphere

Fluid Mechanics of the Atmosphere

Author: Robert A. Brown

Publisher: Academic Press

Published: 1991-03-22

Total Pages: 512

ISBN-13: 9780080917115

DOWNLOAD EBOOK

Fluid Mechanics of the Atmosphere presents the fundamental equations which govern most of the flow problems studied by atmospheric scientists. The equations are derived in a systematic way that is intended to facilitate critical evaluation. The goal of this text is twofold. First the book supplies the student a background familiarity in the underlying physics behind the mathematics. Second it explores some systematic methods of relating these physics to atmospheric problems, including rotating frames of reference effects, vorticity dynamics, and turbulence effects on closure. Stresses vorticity, principles of scaling, and turbulence Extensively illustrated Includes end-of-chapter summaries and problem sets Classroom tested for five years


Mathematical Methods for Geophysics and Space Physics

Mathematical Methods for Geophysics and Space Physics

Author: William I. Newman

Publisher: Princeton University Press

Published: 2016-05-03

Total Pages: 266

ISBN-13: 0691170606

DOWNLOAD EBOOK

An essential textbook on the mathematical methods used in geophysics and space physics Graduate students in the natural sciences—including not only geophysics and space physics but also atmospheric and planetary physics, ocean sciences, and astronomy—need a broad-based mathematical toolbox to facilitate their research. In addition, they need to survey a wider array of mathematical methods that, while outside their particular areas of expertise, are important in related ones. While it is unrealistic to expect them to develop an encyclopedic knowledge of all the methods that are out there, they need to know how and where to obtain reliable and effective insights into these broader areas. Here at last is a graduate textbook that provides these students with the mathematical skills they need to succeed in today's highly interdisciplinary research environment. This authoritative and accessible book covers everything from the elements of vector and tensor analysis to ordinary differential equations, special functions, and chaos and fractals. Other topics include integral transforms, complex analysis, and inverse theory; partial differential equations of mathematical geophysics; probability, statistics, and computational methods; and much more. Proven in the classroom, Mathematical Methods for Geophysics and Space Physics features numerous exercises throughout as well as suggestions for further reading. Provides an authoritative and accessible introduction to the subject Covers vector and tensor analysis, ordinary differential equations, integrals and approximations, Fourier transforms, diffusion and dispersion, sound waves and perturbation theory, randomness in data, and a host of other topics Features numerous exercises throughout Ideal for students and researchers alike An online illustration package is available to professors


Seismoelectric Exploration

Seismoelectric Exploration

Author: Niels Grobbe

Publisher: John Wiley & Sons

Published: 2020-10-13

Total Pages: 496

ISBN-13: 1119127378

DOWNLOAD EBOOK

Seismoelectric coupling and its current and potential future applications The seismoelectric method—the naturally-occurring coupling of seismic waves to electromagnetic fields—can provide insight into important properties of porous media. With a variety of potential environmental and engineering uses, as well as larger scale applications such as earthquake detection and oil and gas exploration, it offers a number of advantages over conventional geophysical methods. Seismoelectric Exploration: Theory, Experiments, and Applications explores the coupling between poroelastic and electromagnetic disturbances, discussing laboratory experiments, numerical modeling techniques, recent theoretical developments, and field studies. Volume highlights include: Physics of the seismoelectric effect at the microscale Governing equations describing coupled seismo-electromagnetic fields Examples of successful seismoelectric field experiments in different geological settings Current and potential applications of seismoelectric coupling Noise removal techniques for seismoelectric field measurements The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.


Advances in Geophysics

Advances in Geophysics

Author: Cedric Schmelzbach

Publisher: Academic Press

Published: 2018-11-13

Total Pages: 182

ISBN-13: 012815537X

DOWNLOAD EBOOK

Advances in Geophysics is a highly-respected publication in the field of geophysics. Since 1952, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 50 volumes, the series contains much material still relevant today – truly an essential publication for researchers in all fields of geophysics. - Provides high-level reviews of the latest innovations in geophysics - Written by recognized experts in the field - Presents an essential publication for researchers in all fields of geophysics


Microseismic Monitoring

Microseismic Monitoring

Author: Vladimir Grechka

Publisher: SEG Books

Published: 2017-09-01

Total Pages: 471

ISBN-13: 1560803479

DOWNLOAD EBOOK

Over the past decade, microseismic monitoring, a technology developed for evaluating completions of wells drilled to produce hydrocarbons from unconventional reservoirs, has grown increasingly popular among oil and gas companies. Microseismic Monitoring, by Vladimir Grechka and Werner M. Heigl, discusses how to process microseismic data, what can and cannot be inferred from such data, and to what level of certainty this might be possible. The narrative of the book follows the passage of seismic waves: from a source triggered by hydraulic fracture stimulation, through hydrocarbon-bearing formations, towards motion sensors. The waves’ characteristics encode the location of their source and its focal mechanism. The analysis of various approaches to harvesting the source-related information from microseismic records has singled out the accuracy of the velocity model, fully accounting for the strong elastic anisotropy of hydraulically fractured shales, as the most critical ingredient for obtaining precise source locations and interpretable moment tensors. The ray theory complemented by its modern extensions, paraxial and Fréchet ray tracing, provides the only practical means available today for building such models. The book is written for geophysicists interested in learning and applying advanced microseismic data-processing techniques.


Anisotropy and Microseismics: Theory and Practice

Anisotropy and Microseismics: Theory and Practice

Author: Vladimir Grechka

Publisher: SEG Books

Published: 2020-08-01

Total Pages: 492

ISBN-13: 1560803746

DOWNLOAD EBOOK

Downhole microseismic monitoring of stimulation and production of unconventional reservoirs has resulted in renewed industry interest in seismic anisotropy. This occurred not only because anisotropy of hydrocarbon-bearing shales is among the strongest in rocks but also because downhole microseismics shifts the focus from the standard exploration of P-waves to shear waves. The consequences of the difference in wave type are profound for geophysicists because everyone involved - from theoreticians to developers and users of microseismic data-processing software - must be aware of shear-wave splitting, singularities, and multivalued wavefronts, which have been largely irrelevant for P-waves propagating in relatively simple geologic settings. Anisotropy and Microseismics leads readers on a path of discovery of rarely examined wave phenomena and their possible usage. Most of the chapters begin by formulating a question, followed by explanations of what is exciting about it, where the mystery might lie, and what could be the potential value of answering the question. Importantly, the findings entail useful applications, as showcased by the unmistakably practical flavor of the chapters on microseismic event location, moment tensor inversion, and imaging. As an investigation of microseismic methodologies and techniques is conducted, it often yields unexpected results.