Tensor Eigenvalues and Their Applications

Tensor Eigenvalues and Their Applications

Author: Liqun Qi

Publisher: Springer

Published: 2018-03-30

Total Pages: 336

ISBN-13: 9811080585

DOWNLOAD EBOOK

This book offers an introduction to applications prompted by tensor analysis, especially by the spectral tensor theory developed in recent years. It covers applications of tensor eigenvalues in multilinear systems, exponential data fitting, tensor complementarity problems, and tensor eigenvalue complementarity problems. It also addresses higher-order diffusion tensor imaging, third-order symmetric and traceless tensors in liquid crystals, piezoelectric tensors, strong ellipticity for elasticity tensors, and higher-order tensors in quantum physics. This book is a valuable reference resource for researchers and graduate students who are interested in applications of tensor eigenvalues.


Tensor Analysis

Tensor Analysis

Author: Liqun Qi

Publisher: SIAM

Published: 2017-04-19

Total Pages: 313

ISBN-13: 1611974747

DOWNLOAD EBOOK

Tensors, or hypermatrices, are multi-arrays with more than two indices. In the last decade or so, many concepts and results in matrix theory?some of which are nontrivial?have been extended to tensors and have a wide range of applications (for example, spectral hypergraph theory, higher order Markov chains, polynomial optimization, magnetic resonance imaging, automatic control, and quantum entanglement problems). The authors provide a comprehensive discussion of this new theory of tensors. Tensor Analysis: Spectral Theory and Special Tensors is unique in that it is the first book on these three subject areas: spectral theory of tensors; the theory of special tensors, including nonnegative tensors, positive semidefinite tensors, completely positive tensors, and copositive tensors; and the spectral hypergraph theory via tensors. ?


Theory and Computation of Complex Tensors and its Applications

Theory and Computation of Complex Tensors and its Applications

Author: Maolin Che

Publisher: Springer Nature

Published: 2020-04-01

Total Pages: 258

ISBN-13: 9811520593

DOWNLOAD EBOOK

The book provides an introduction of very recent results about the tensors and mainly focuses on the authors' work and perspective. A systematic description about how to extend the numerical linear algebra to the numerical multi-linear algebra is also delivered in this book. The authors design the neural network model for the computation of the rank-one approximation of real tensors, a normalization algorithm to convert some nonnegative tensors to plane stochastic tensors and a probabilistic algorithm for locating a positive diagonal in a nonnegative tensors, adaptive randomized algorithms for computing the approximate tensor decompositions, and the QR type method for computing U-eigenpairs of complex tensors. This book could be used for the Graduate course, such as Introduction to Tensor. Researchers may also find it helpful as a reference in tensor research.


Tensors: Geometry and Applications

Tensors: Geometry and Applications

Author: J. M. Landsberg

Publisher: American Mathematical Soc.

Published: 2011-12-14

Total Pages: 464

ISBN-13: 0821869078

DOWNLOAD EBOOK

Tensors are ubiquitous in the sciences. The geometry of tensors is both a powerful tool for extracting information from data sets, and a beautiful subject in its own right. This book has three intended uses: a classroom textbook, a reference work for researchers in the sciences, and an account of classical and modern results in (aspects of) the theory that will be of interest to researchers in geometry. For classroom use, there is a modern introduction to multilinear algebra and to the geometry and representation theory needed to study tensors, including a large number of exercises. For researchers in the sciences, there is information on tensors in table format for easy reference and a summary of the state of the art in elementary language. This is the first book containing many classical results regarding tensors. Particular applications treated in the book include the complexity of matrix multiplication, P versus NP, signal processing, phylogenetics, and algebraic statistics. For geometers, there is material on secant varieties, G-varieties, spaces with finitely many orbits and how these objects arise in applications, discussions of numerous open questions in geometry arising in applications, and expositions of advanced topics such as the proof of the Alexander-Hirschowitz theorem and of the Weyman-Kempf method for computing syzygies.


Tensor Analysis with Applications in Mechanics

Tensor Analysis with Applications in Mechanics

Author: L. P. Lebedev

Publisher: World Scientific

Published: 2010

Total Pages: 378

ISBN-13: 9814313998

DOWNLOAD EBOOK

1. Preliminaries. 1.1. The vector concept revisited. 1.2. A first look at tensors. 1.3. Assumed background. 1.4. More on the notion of a vector. 1.5. Problems -- 2. Transformations and vectors. 2.1. Change of basis. 2.2. Dual bases. 2.3. Transformation to the reciprocal frame. 2.4. Transformation between general frames. 2.5. Covariant and contravariant components. 2.6. The cross product in index notation. 2.7. Norms on the space of vectors. 2.8. Closing remarks. 2.9. Problems -- 3. Tensors. 3.1. Dyadic quantities and tensors. 3.2. Tensors from an operator viewpoint. 3.3. Dyadic components under transformation. 3.4. More dyadic operations. 3.5. Properties of second-order tensors. 3.6. Eigenvalues and eigenvectors of a second-order symmetric tensor. 3.7. The Cayley-Hamilton theorem. 3.8. Other properties of second-order tensors. 3.9. Extending the Dyad idea. 3.10. Tensors of the fourth and higher orders. 3.11. Functions of tensorial arguments. 3.12. Norms for tensors, and some spaces. 3.13. Differentiation of tensorial functions. 3.14. Problems -- 4. Tensor fields. 4.1. Vector fields. 4.2. Differentials and the nabla operator. 4.3. Differentiation of a vector function. 4.4. Derivatives of the frame vectors. 4.5. Christoffel coefficients and their properties. 4.6. Covariant differentiation. 4.7. Covariant derivative of a second-order tensor. 4.8. Differential operations. 4.9. Orthogonal coordinate systems. 4.10. Some formulas of integration. 4.11. Problems -- 5. Elements of differential geometry. 5.1. Elementary facts from the theory of curves. 5.2. The torsion of a curve. 5.3. Frenet-Serret equations. 5.4. Elements of the theory of surfaces. 5.5. The second fundamental form of a surface. 5.6. Derivation formulas. 5.7. Implicit representation of a curve; contact of curves. 5.8. Osculating paraboloid. 5.9. The principal curvatures of a surface. 5.10. Surfaces of revolution. 5.11. Natural equations of a curve. 5.12. A word about rigor. 5.13. Conclusion. 5.14. Problems -- 6. Linear elasticity. 6.1. Stress tensor. 6.2. Strain tensor. 6.3. Equation of motion. 6.4. Hooke's law. 6.5. Equilibrium equations in displacements. 6.6. Boundary conditions and boundary value problems. 6.7. Equilibrium equations in stresses. 6.8. Uniqueness of solution for the boundary value problems of elasticity. 6.9. Betti's reciprocity theorem. 6.10. Minimum total energy principle. 6.11. Ritz's method. 6.12. Rayleigh's variational principle. 6.13. Plane waves. 6.14. Plane problems of elasticity. 6.15. Problems -- 7. Linear elastic shells. 7.1. Some useful formulas of surface theory. 7.2. Kinematics in a neighborhood of [symbol]. 7.3. Shell equilibrium equations. 7.4. Shell deformation and strains; Kirchhoff's hypotheses. 7.5. Shell energy. 7.6. Boundary conditions. 7.7. A few remarks on the Kirchhoff-Love theory. 7.8. Plate theory. 7.9. On Non-classical theories of plates and shells


Computational Science and Its Applications - ICCSA 2011

Computational Science and Its Applications - ICCSA 2011

Author: Beniamino Murgante

Publisher: Springer Science & Business Media

Published: 2011-06-15

Total Pages: 796

ISBN-13: 3642219276

DOWNLOAD EBOOK

The five-volume set LNCS 6782 - 6786 constitutes the refereed proceedings of the International Conference on Computational Science and Its Applications, ICCSA 2011, held in Santander, Spain, in June 2011. The five volumes contain papers presenting a wealth of original research results in the field of computational science, from foundational issues in computer science and mathematics to advanced applications in virtually all sciences making use of computational techniques. The topics of the fully refereed papers are structured according to the five major conference themes: geographical analysis, urban modeling, spatial statistics; cities, technologies and planning; computational geometry and applications; computer aided modeling, simulation, and analysis; and mobile communications.


Discriminants, Resultants, and Multidimensional Determinants

Discriminants, Resultants, and Multidimensional Determinants

Author: Israel M. Gelfand

Publisher: Springer Science & Business Media

Published: 2009-05-21

Total Pages: 529

ISBN-13: 0817647716

DOWNLOAD EBOOK

"This book revives and vastly expands the classical theory of resultants and discriminants. Most of the main new results of the book have been published earlier in more than a dozen joint papers of the authors. The book nicely complements these original papers with many examples illustrating both old and new results of the theory."—Mathematical Reviews


Theory and Computation of Tensors

Theory and Computation of Tensors

Author: Yimin Wei

Publisher: Academic Press

Published: 2016-08-28

Total Pages: 150

ISBN-13: 0128039809

DOWNLOAD EBOOK

Theory and Computation of Tensors: Multi-Dimensional Arrays investigates theories and computations of tensors to broaden perspectives on matrices. Data in the Big Data Era is not only growing larger but also becoming much more complicated. Tensors (multi-dimensional arrays) arise naturally from many engineering or scientific disciplines because they can represent multi-relational data or nonlinear relationships. - Provides an introduction of recent results about tensors - Investigates theories and computations of tensors to broaden perspectives on matrices - Discusses how to extend numerical linear algebra to numerical multi-linear algebra - Offers examples of how researchers and students can engage in research and the applications of tensors and multi-dimensional arrays


General Relativity and its Applications

General Relativity and its Applications

Author: Valeria Ferrari

Publisher: CRC Press

Published: 2020-12-21

Total Pages: 494

ISBN-13: 0429957807

DOWNLOAD EBOOK

• Provides a self-contained and consistent treatment of the subject that does not require advanced previous knowledge of the field. • Explores the subject with a new focus on gravitational waves and astrophysical relativity, unlike current introductory textbooks. • Fully up-to-date, containing the latest developments and discoveries in the field.